Numerical Validation of the Goda Spread Parameter of Extreme Wave Height Distribution

Author(s):  
G. Benassai ◽  
E. Chianese

Starting from the definition of the Goda spread parameter γ50 and from the verification of the spatial homogeneity hypothesis, the 50-year significant wave height H50 was obtained for a sea area characterized by a limited wave observation period. The procedure was applied for the location of Cetraro in the Southern Tyrrhenian Sea starting from the waves recorded offshore Ponza, provided that the spatial homogeneity hypothesis was verified. This hypothesis was not verified, however, between the wave measurement stations of Crotone or Catania and two wave measurement stations recently installed by Calabria Region in the Ionian Sea. In the Southern Tyrrhenian Sea the results of H50 were compared with the ones obtained with the method of fetch transposition of De Girolamo & Contini (1998).

1986 ◽  
Vol 1 (20) ◽  
pp. 26
Author(s):  
J.T. Juang

Due to the special bathymetry in Taiwan Strait, the waves off the western coast of Taiwan are considered to be composed of two-source wave system. One propagates from the central part of the Strait named main wave, and the other is generated by the local wind known as local wave which occurs along the shore. After the combination and the transformation procedure from these two-nonlinear-source wave system, the wave height distribution in Taiwan Strait should be modified. A comparison of the wave height distributions based on the present proposed method with the field data indicates that the present method yields a better result than other theorems. Furthermore, the result of application of two non-linear wave theorem to wave prediction are also presented.


2008 ◽  
Vol 17 ◽  
pp. 13-18 ◽  
Author(s):  
P. Lionello ◽  
M. B. Galati

Abstract. This study analyzes the link between the SWH (Significant Wave Height) distribution in the Mediterranean Sea during the second half of the 20th century and the Northern Hemisphere SLP (Sea Level Pressure) teleconnection patterns. The SWH distribution is computed using the WAM (WAve Model) forced by the surface wind fields provided by the ERA-40 reanalysis for the period 1958–2001. The time series of mid-latitude teleconnection patterns are downloaded from the NOAA web site. This study shows that several mid-latitude patterns are linked to the SWH field in the Mediterranean, especially in its western part during the cold season: East Atlantic Pattern (EA), Scandinavian Pattern (SCA), North Atlantic Oscillation (NAO), East Atlantic/West Russia Pattern (EA/WR) and East Pacific/ North Pacific Pattern (EP/NP). Though the East Atlantic pattern exerts the largest influence, it is not sufficient to characterize the dominant variability. NAO, though relevant, has an effect smaller than EA and comparable to other patterns. Some link results from possibly spurious structures. Patterns which have a very different global structure are associated to similar spatial features of the wave variability in the Mediterranean Sea. These two problems are, admittedly, shortcomings of this analysis, which shows the complexity of the response of the Mediterranean SWH to global scale SLP teleconnection patterns.


1983 ◽  
Vol 88 (C10) ◽  
pp. 5925 ◽  
Author(s):  
Edward B. Thornton ◽  
R. T. Guza

2019 ◽  
Vol 19 (8) ◽  
pp. 2270-2279
Author(s):  
Ang Gao ◽  
Shiqiang Wu ◽  
Li Chen ◽  
Sien Liu ◽  
Zhun Xu ◽  
...  

Abstract With the method of a wind tank experiment, the real scenario of lakes with horizontal and vertical circulation of wind-induced flows is considered, and the features of wind wave height and its distribution in the different conditions of wind blowing distance, wind speed and water depth are studied systematically. Afterwards, comparison of the wave height distributions derived directly from experiment and the typical wave height distribution models show that some defects exist in typical wave height distribution models when describing wind wave height distribution in the wave growth stage. On this basis, we propose a new distribution model which is suitable for the description of wind wave height during the growth stage, and the model parameters are acquired with the programming solution method. Finally, the model is further optimized by relating B to σa, and Hs to σa. Comparison results of the optimized model and the typical ones show that the optimized model has advantages in calculation accuracy and convenience of use.


1978 ◽  
Vol 1 (16) ◽  
pp. 32 ◽  
Author(s):  
J.A. Battjes ◽  
J.P.F.M. Janssen

A description is given of a model developed for the prediction of the dissipation of energy in random waves breaking on a beach. The dissipation rate per breaking wave is estimated from that in a bore of corresponding height, while the probability of occurrence of breaking waves is estimated on the basis of a wave height distribution with an upper cut-off which in shallow water is determined mainly by the local depth. A comparison with measurements of wave height decay and set-up, on a plane beach and on a beach with a bar-trough profile, indicates that the model is capable of predicting qualitatively and quantitatively all the main features of the data.


Sign in / Sign up

Export Citation Format

Share Document