An Experimental Study on Wax Removal in Pipes With Oil Flow

Author(s):  
Qian Wang ◽  
Cem Sarica ◽  
Michael Volk

Pigging is recognized as one of the most used techniques for removing wax deposits in pipelines. In an earlier paper, the mechanics of the wax removal was studied using an experimental setup under dry conditions, i.e., no oil presence. In this study, the pigging experiments are conducted for both regular disc and by-pass disc pigs under flowing conditions. A new test facility was designed and constructed. The test section is 6.1 m (20-ft) long Schedule 40 steel pipe with an inner diameter of 0.0762 m (3-in.). A mixture of a commercial wax and a mineral oil is cast inside the spool pieces for different wax thicknesses and wax oil contents. The wax breaking and plug transportation forces are investigated separately. The results indicated that the wax breaking force increases as wax thickness increases, and the wax plug transportation force gradient is independent of the wax plug length. In comparison to previous test results, presence of oil reduced the wax plug transportation force. Experimental results also showed that the wax transport behavior of the by-pass pig is significantly different than that of the regular pig. The by-pass pig allows the oil to flow through the by-pass holes and mobilizes the removed wax in front of the pig resulting in no discernible wax accumulation in front of the pig. Therefore, no measurable transportation force was observed for the by-pass pig tests.

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Qian Wang ◽  
Cem Sarica ◽  
Michael Volk

Pigging is recognized as one of the most used techniques for removing wax deposits in pipelines. In an earlier paper, the mechanics of wax removal was studied using an experimental setup under dry conditions, i.e., no oil presence. In this study, the pigging experiments are conducted for both regular disk and by-pass disk pigs under flowing conditions. A new test facility was designed and constructed. The test section is 6.1 m (20 ft) long schedule 40 steel pipe with an inner diameter of 0.0762 m (3 in.). A mixture of commercial wax and mineral oil is cast inside the spool pieces for different wax thicknesses and oil contents. The wax breaking and plug transportation forces are investigated separately. The results indicated that the wax breaking force increases as wax thickness increases, and the wax plug transportation force gradient is independent of the wax plug length. In comparison to previous test results, the presence of oil reduced the wax plug transportation force. Experimental results also showed that the wax transport behavior of the by-pass pig is significantly different than that of the regular pig. The by-pass pig allows the oil to flow through the by-pass holes and mobilizes the removed wax in front of the pig resulting in no discernible wax accumulation in front of the pig. Therefore, no measurable transportation force was observed for the by-pass pig tests.


2005 ◽  
Vol 127 (4) ◽  
pp. 302-309 ◽  
Author(s):  
Qian Wang ◽  
Cem Sarica ◽  
Tom X. Chen

Pigging has been recognized as the most cost-effective method for preventing flow restriction by wax deposits in subsea flowlines. However, the pigging mechanics for wax removal in pipelines is still very poorly understood. A unique test facility was designed and constructed for experimental studies on the mechanics of wax removal in pipelines. The test facility consisted of a test section, a support structure, an apparatus to pull the pig through the test pipe, and a computer-based data acquisition system. The test section was 6.4m(21ft) long and was made from 0.0762m(3in.) inner diameter schedule-40 steel pipe. The mixture of commercial wax and mineral oil was cast inside the test section at different wax thickness and oil contents. A series of experiments was performed to investigate the wax removal mechanics with three different types of conventional pigs, i.e., cup, disc, and foam pigs. The experiments showed that a typical wax removal process using a pig followed four distinct phases, namely, wax breaking, plug formation, accumulation, and production phases. Wax accumulation can be very significant and is expected to be the dominating factor for the force required for moving a pig in long pipelines. As wax thickness and hardness increases, the required force to move the pig increases. The shape and material of the pig have a profound effect on the wax removal performance. While the disc pig provides the most efficient wax removal, the force requirement is excessive, especially for thicker and harder wax deposits. The wax removal performance of a cup pig is very similar to that of a disc pig. However, the cup pig can withstand higher load without mechanical damages than the disc pig. The foam pig offers the poorest wax removal performance.


1981 ◽  
Author(s):  
J O’Connell ◽  
A Rumaks ◽  
J L Williams ◽  
T R Griggs

We have evaluated four materials (polyurethane, silicone rubber, Teflon, and heparin-coated polyurethane) for compatibility with blood in six human volunteers. The test method employs a standard indwelling intravenous catheter (16 ga, 2 1/2") through which 100 cm lengths of small-bore (0.5 mm inner diameter) tubes made from the materials to be tested are passed. The tubes are filled with saline before they are inserted, and the distal end of the tube is immersed in sterile mineral oil. The rate and duration of flow through these tubes is determined by counting drops of blood as they emerge into the mineral oil. The four materials were tested in each of six volunteers, in random order during a single day.The testing produced no complications in the subjects. The average blood loss after 5 hours of testing was 25 ml.A safe and simple method for testing artificial materials for reactivity with native human blood is described. The major characteristics of the test are that the blood is in contact only with the test material and that multiple samples can be tested in a single subject on a single day.


2006 ◽  
Vol 14 (2) ◽  
pp. 489-493
Author(s):  
Michael J. Gefell ◽  
Erin C. Rankin ◽  
William R. Jones

Author(s):  
Tuyen Vu Nguyen ◽  
Weiguang Li

The dynamic and hydrodynamic properties of the pad in the fluid pivot journal bearing are investigated in this paper. Preload coefficients, recess area, and size gap, which were selected as input parameters to investigate, are important parameters of fluid pivot journal bearing. The pad’s pendulum angle, lubricant oil flow through the gap, and recess pressure which characterizes the squeeze film damper were investigated with different preload coefficients, recess area, and gap sizes. The computational models were established and numerical methods were used to determine the equilibrium position of the shaft-bearing system. Since then, the pendulum angle of the pad, liquid flow, and recess pressure were determined by different eccentricities.


2013 ◽  
Vol 842 ◽  
pp. 114-117
Author(s):  
Xiu Ling Wang ◽  
Li Ying Yang ◽  
Shou Ren Wang ◽  
Yi Zhang

A series of Ti-48Al-2Cr-2Nb/62%BaF2-38%CaF2 (CB) self-lubricating composites with addition of different weight percentage of solid lubricant were prepared by vacuum hot pressing sintering. Sliding wear tests against 45#steel were performed on the specimen in dry conditions, worn morphology was observed by the scanning electron microscope (SEM). The test results show that when addition of solid lubricant weight percentage is 10%, the worn surface of the composites is most smooth.The main wear mechanisms of Ti-48Al-2Cr-2Nb/62%BaF2-38%CaF2 composite are abrasive wear and adherent wear.


1983 ◽  
Vol 105 (2) ◽  
pp. 348-353 ◽  
Author(s):  
D. E. Wright ◽  
L. L. Tignac

Rocketdyne is under contract to the Department of Energy for the development of heat exchanger technology that will allow coal to be burned for power generation and cogeneration applications. This effort involves both atmospheric fluidized bed and pulverized coal combustion systems. In addition, the heat exchanger designs cover both metallic and ceramic materials for high-temperature operations. This paper reports on the laboratory and small AFB test results completed to date. It also covers the design and installation of a 6×6 ft atmospheric fluidized bed test facility being used to correlate and expand the knowledge gained from the initial tests. The paper concludes by showing the direction this technology is taking and outlining the steps to follow in subsequent programs.


Author(s):  
Alan R. May Estebaranz ◽  
Richard J. Williams ◽  
Simon I. Hogg ◽  
Philip W. Dyer

A laboratory scale test facility has been developed to investigate deposition in steam turbines under conditions that are representative of those in steam power generation cycles. The facility is an advanced two-reactor vessel test arrangement, which is a more flexible and more accurately controllable refinement to the single reactor vessel test arrangement described previously in ASME Paper No. GT2014-25517 [1]. The commissioning of the new test facility is described in this paper, together with the results from a series of tests over a range of steam conditions, which show the effect of steam conditions (particularly steam pressure) on the amount and type of deposits obtained. Comparisons are made between the test results and feedback/experience of copper fouling in real machines.


Sign in / Sign up

Export Citation Format

Share Document