Finite Element Analysis of Clamp-On Buckle Arrestor for Pipe-in-Pipe Flowlines by Reel-Lay Installation

Author(s):  
Jason Sun ◽  
Paul Jukes

Development of deep water oil reservoirs are undertaken in the Gulf of Mexico (GoM) where the flowlines are installed in the water depths in excess of 3,050m (10,000ft). Deepwater external pressure becomes so significant that it makes local buckling or accidental collapse propagate along the pipeline. Such propagation will not stop until it reaches a region where the external pressure falls below the propagating pressure or where the pipe wall is strengthened. Field data indicates that once a buckle happens, the flowline could collapse many kilometers instantly. It concludes that buckle propagation could cause substantial economical impact if left uncontrolled. For pipe-in-pipe (PIP) flowline, due to lack of pressure differential, the outer pipe becomes a fragile component in terms of buckle propagation. One way to prevent the propagation of local buckling or collapse is to utilize the buckle arrestors of various types. Clamp-on buckle arrestor is so far the best choice for the flowlines to be installed by the Reel-Lay method. The objective of this paper is to present the results of a finite element (FE) study, to reveal the phenomena of collapsing/propagating of the pipe-in-pipe flowline, and to investigate the effectiveness of Clamp-on buckle arrestor for deep water flowlines. Sensitivities of key design parameters are explored with the purpose of guiding detail mechanical design of the clamp-on buckle arrestor.

Author(s):  
Haoyu Wang ◽  
Jason Sun ◽  
Paul Jukes

Development of deepwater oil reservoirs has been undertaken in the Gulf of Mexico (GoM) where flowlines are installed in water depths in the vicinity of 2,740m (9,000ft). Preventing the propagation of local collapse/buckle failures is one of the key engineering design limit states that is defined in the industry codes to ensure the pipeline integrity. Deep-water buckle propagation is almost unavoidable as the wall thickness selection cannot be directly driven by the buckle propagation limit state. Field data indicates that once a buckle happens, the flowline could collapse for many kilometers instantly. Buckle propagation could cause substantial economic impact if left uncontrolled. For Pipe-in-Pipe (PIP) flowline, due to lack of pressure differential, the jacket pipe is a fragile component in terms of buckle propagation. It is crucial to prevent any possible local buckling during the flowline installation and during the entire operational lifetime. One way to stop buckle propagation is to utilize buckle arrestors of various types. Successfully designed buckle arrestors can contain such disasters to a limited pipeline section. Internal buckle arrestors are a relatively new solution for PIP systems being investigated by the industry. As it is installed in the annulus of PIP, it becomes a preferred choice since it fits all types of installation methods. The objective of this paper is to present the design and finite element analysis (FEA) of a laminate type internal buckle arrestor, and to investigate the effectiveness of this innovative buckle arrestor design for deepwater flowline. Sensitivities of key design parameters are explored with the purpose of guiding detailed mechanical design.


Author(s):  
R. Talebpour ◽  
K. Abedi ◽  
A. R. M. Gharebaghi

Preventing the occurrence of local buckling due to external pressure is one of the main concerns in design of offshore pipelines. However, when a pipeline is designed for deepwater, prevention of the propagation of local buckling along the pipeline has more importance. Therefore, the study of buckle propagation phenomenon and its prevention is a subject of many researches in the past 25 years. Great amount of these researches have focused on appropriate estimation of buckle propagation pressure. In this paper, details of 3-D finite element modeling for buckle propagation simulation are outlined. In order to verify the accuracy and validity of the finite element modeling, the numerical results, obtained from nonlinear finite element analysis have been compared with the results of the experimental study on full-scale models, undertaken by C-FER Technologies, Canada, which have been published by Toscano et al. (2002). Comparison shows that the finite element results have very close agreement with the experimental behaviour. Also, in the present paper, numerical results of Toscano et al. are discussed; and the study shows that the proposed method, outlined in this paper, gives more appropriate results than the proposed method by Toscano et al. In addition, the buckle propagation of pipeline under the uniform external pressure as well as non-uniform pressure, due to the presence of the internal flow (when the pipe is not full of fluid) is studied. The change of buckle propagation pressure is determined by the proposed method.


Author(s):  
Z. Omrani ◽  
K. Abedi ◽  
A. R. Mostafa Gharabaghi

In this paper, a numerical study of the dynamic buckle propagation, initiated in long pipes under external pressure, is presented. For a long pipe, due to the high exerted pressure, local instability is likely to occur; therefore, the prevention of its occurrence and propagation are very important subjects in the design of pipelines. The 3D finite element modeling of the buckle propagation is presented by considering the inertia of the pipeline and the nonlinearity introduced by the contact between its collapsing walls. The buckling and collapse are assumed to take place in the vacuum. The numerical results of the nonlinear finite element analysis are compared with the experimental results obtained by Kyriakides and Netto (2000, “On the Dynamics of Propagating Buckle in Pipelines,” Int. J. Solids Struct., 37, pp. 6843–6878) from a study on the small-scale models. Comparison shows that the finite element results have very close agreement with those of the experimental study. Therefore, it is concluded that the finite element model is reliable enough to be used for nonlinear collapse analysis of the dynamic buckle propagation in the pipelines. In this study, the effects of external pressure on the velocity of dynamic buckle propagation for different diameter to thickness ratios are investigated. In addition, the mathematical relations, based on the initiation pressure, are derived for the velocity of buckle propagation considering the diameter to thickness ratio of the pipeline. Finally, a relation for the buckle velocity as a function of the pressure and diameter to thickness ratio is presented.


Aero Gas Turbine engines power aircrafts for civil transport application as well as for military fighter jets. Jet pipe casing assembly is one of the critical components of such an Aero Gas Turbine engine. The objective of the casing is to carry out the required aerodynamic performance with a simultaneous structural performance. The Jet pipe casing assembly located in the rear end of the engine would, in case of fighter jet, consist of an After Burner also called as reheater which is used for thrust augmentation to meet the critical additional thrust requirement as demanded by the combat environment in the war field. The combustion volume for the After burner operation together with the aerodynamic conditions in terms of pressure, temperature and optimum air velocity is provided by the Jet pipe casing. While meeting the aerodynamic requirements, the casing is also expected to meet the structural requirements. The casing carries a Convergent-Divergent Nozzle in the downstream side (at the rear end) and in the upstream side the casing is attached with a rear mount ring which is an interface between engine and the airframe. The mechanical design parameters involving Strength reserve factors, Fatigue Life, Natural Frequencies along with buckling strength margins are assessed while the Jet pipe casing delivers the aerodynamic outputs during the engine operation. A three dimensional non linear Finite Element analysis of the Jet pipe casing assembly is carried out, considering the up & down stream aerodynamics together with the mechanical boundary conditions in order to assess the Mechanical design parameters.


Author(s):  
John Barrett ◽  
Shawn Kenny ◽  
Ryan Phillips

Pipeline structural integrity is a critical component of pipeline design in extreme environmental conditions. Severe loads may be an issue in pipeline design if differential ground movement is prevalent in the design region, e.g. ground faulting and permafrost heave and settlement. Iceberg or ice keel interaction and large seabed deformations interacting may also be a critical design integrity issue for offshore pipelines in ice environments. Numerical finite element modelling procedures have been developed to assess the bending moment and strain capacity of several pipelines over various typical pipeline parameters. This study looks at the effects of girth-weld imperfection on the bending response of welded pipelines. Limited guidance is provided by pipeline design standards, for example DNV OS-F101 and CSA Z662, as to how to account for girth weld effects on the local buckling response. This paper investigates girth weld effects across a range of practical design parameters. Calibration of the numerical analysis was performed using available data, from full-scale tests and finite element analysis, for girth welded pipes in order to obtain confidence in the numerical procedure. The significance of girth weld effects was to reduce the peak bending moment capacity by 10% whereas strain capacity was reduced by as much as 35% based on the degree of girth weld imperfection. Girth weld effects have been acknowledged in industry, however, further research and physical testing is required to fully understand the problem, as shown in this paper.


2014 ◽  
Vol 488-489 ◽  
pp. 1039-1042
Author(s):  
Yi Zhou Lin ◽  
Jiang Hong Xue ◽  
Ming Qiao Tang

The buckle propagation phenomenon in offshore pipelines is an important subject of ocean engineering. The local buckling will easily propagate along the pipeline if the external hydrostatic pressure is high enough. The buckle propagation will seriously hinder the transmission of the oil. This paper focuses on the numerical calculation of buckle propagation pressure using ABAQUS software.


2021 ◽  
Vol 183 ◽  
pp. 331-336
Author(s):  
Zhang Liming ◽  
He Yulong ◽  
Xu Shanjun ◽  
Zhang Tong ◽  
Guo Junlong ◽  
...  

Author(s):  
Peter Carter ◽  
D. L. Marriott ◽  
M. J. Swindeman

This paper examines techniques for the evaluation of two kinds of structural imperfection, namely bulging subject to internal pressure, and out-of-round imperfections subject to external pressure, with and without creep. Comparisons between comprehensive finite element analysis and API 579 Level 2 techniques are made. It is recommended that structural, as opposed to material, failures such as these should be assessed with a structural model that explicitly represents the defect.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


Sign in / Sign up

Export Citation Format

Share Document