Time Trace Window Based Approach for SCR Strength Analysis in Ultra Deepwater of Gulf of Mexico

Author(s):  
Jack Chen ◽  
Peimin Cao ◽  
Huadong Zhu ◽  
Paul Jukes

For a steel catenary riser (SCR) in the ultra deep water of the Gulf of Mexico (GOM), the areas of major concern from a dynamic stress response point of view are the sagbend region near the touchdown and the region below the hang-off at the SCR top where local bending must be accommodated. Usually global strength (stress/strain/buckling) analysis focuses primarily on the sagbend region, while more detailed analysis associated with design of the riser hang-off assembly concentrates on the SCR top region. The global strength design of the SCR is controlled by dynamic response in the sagbend region, which is primarily driven by the host vessel motions. Vessel motions are in turn induced by metocean conditions such as hurricanes and winter storms. Given the random nature of the ocean waves, to obtain statistically sound results, random wave simulations involving multiple (usually ten (10)) three (3) hour realizations have been a well accepted practice by the offshore industry. Just as waves in an extreme or survival storm event are randomly distributed, stress (and strain) response events are randomly distributed as well. For a comprehensive design, there will be far more than one sea state to be analyzed with each sea state undergoing multiple three (3) hour simulations. In addition, the design often progresses iteratively, i.e., there will be several cycles of analyses to be performed before the final design can be concluded. Therefore, the overall computational resources in terms of time and data storage are quite significant. This paper presents the methodology that significantly reduces the computer simulation time without compromising the analysis accuracy for the strength analysis of the SCR. The paper uses the example of a SCR in the ultra deepwater of the GOM attached to a DeepDraft Semi™ designed by SBM Atlantia Inc. The methodology builds on time traces of the host vessel motions, and the correlation between the vessel/porch motion and the SCR sagbend response. Generally the maximum riser sagbend stress occurs when the wave pushes the vessel, then the riser porch toward its touchdown point (slack position). One vessel/porch motion characteristic — the downward speed at the riser porch dominates the SCR sagbend response. By screening the downward speeds at the riser porch under slack condition, the time at which the sagbend response (stress/strain/buckling) peaks is identified. A time trace window containing the peak time and with band width of about 200 seconds is located and the SCR global dynamic analysis is performed based on this time trace window. In some scenarios, up to five (5) windows associated with the top five (5) downward speeds at the riser porch for one realization are needed to capture the peak stress response in the SCR sagbend.

2011 ◽  
Author(s):  
Majid M. Al-Sharif ◽  
Partha Chakrabarti ◽  
Kaushik Bose

2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
He Wang ◽  
Jingsong Yang ◽  
Jianhua Zhu ◽  
Lin Ren ◽  
Yahao Liu ◽  
...  

Sea state estimation from wide-swath and frequent-revisit scatterometers, which are providing ocean winds in the routine, is an attractive challenge. In this study, state-of-the-art deep learning technology is successfully adopted to develop an algorithm for deriving significant wave height from Advanced Scatterometer (ASCAT) aboard MetOp-A. By collocating three years (2016–2018) of ASCAT measurements and WaveWatch III sea state hindcasts at a global scale, huge amount data points (>8 million) were employed to train the multi-hidden-layer deep learning model, which has been established to map the inputs of thirteen sea state related ASCAT observables into the wave heights. The ASCAT significant wave height estimates were validated against hindcast dataset independent on training, showing good consistency in terms of root mean square error of 0.5 m under moderate sea condition (1.0–5.0 m). Additionally, reasonable agreement is also found between ASCAT derived wave heights and buoy observations from National Data Buoy Center for the proposed algorithm. Results are further discussed with respect to sea state maturity, radar incidence angle along with the limitations of the model. Our work demonstrates the capability of scatterometers for monitoring sea state, thus would advance the use of scatterometers, which were originally designed for winds, in studies of ocean waves.


Author(s):  
Céline Drouet ◽  
Nicolas Cellier ◽  
Jérémie Raymond ◽  
Denis Martigny

In-service monitoring can help to increase safety of ships especially regarding the fatigue assessment. For this purpose, it is compulsory to know the environmental conditions encountered: wind, but also the full directional wave spectrum. During the EU TULCS project, a full scale measurements campaign has been conducted onboard the CMA-CGM 13200 TEU container ship Rigoletto. She has been instrumented to measure deformation of the ship as well as the sea state encountered during its trip. This paper will focus on the sea state estimation. Three systems have been installed to estimate the sea state encountered by the Rigoletto: An X-band radar from Ocean Waves with WAMOS® system and two altimetric wave radars from RADAC®. Nevertheless, the measured significant wave height can be disturbed by several external elements like bow waves, sprays, sea surface ripples, etc… Furthermore, ship motions are also measured and can provide another estimation of the significant wave height using a specific algorithm developed by DCNS Research for the TULCS project. As all those estimations are inherently different, it is necessary to make a fusion of those data to provide a single estimation (“best estimate”) of the significant wave height. This paper will present the data fusion process developed for TULCS and show some first validation results.


Author(s):  
Anskey A. Miranda ◽  
Fred P. Turner ◽  
Nigel Barltrop

This paper presents a study of the analysis methodologies used to predict the most likely response of flexibles in a subsea environment, with the aim of determining an efficient and reliable prediction methodology. The most accurate method involves simulating multiple wave realisations of a real world sea state, i.e. irregular waves, and post-processing the results to determine the most probable maximum (MPM). Due to the computationally intensive nature of this approach, however, regular wave analysis is typically used to determine flexible response. This approach considers the maximum wave within a design storm at a desired period; the choice of periods may leave room for uncertainty in the conservatism of the approach. With proper screening, regular wave analysis can be a valid yet overly conservative approach resulting in over design and additional cost. However, if screened incorrectly, there is a possibility that the choice of periods could give results that are under conservative. In addition to regular wave analysis, the paper presents two alternative methodologies to determine the most likely response, with the focus on reducing the computational resources required. The first alternative is an ‘Irregular Wave Screen’ approach in which the wave train is screened at areas of interest for waves within a user defined threshold of the maximum wave height, in addition to other user defined parameters. Only waves within these parameters are simulated to determine responses. The second alternative is the ‘New Wave’ approach, which models the most probable wave elevation around the maximum wave crest. The calculated new wave is then placed at the desired location to determine responses. The responses of the Regular, Irregular Wave Screen and New Wave methodologies are compared with the Irregular MPM approach to determine their feasibility to predict the response of flexibles in a real world irregular sea state with lower computational requirements.


Author(s):  
Cheng Shu ◽  
Li Hong ◽  
Zhang Dongxu

The strength of an oil carrier is generally checked using static load or equivalent load of wave action in accordance with relevant specifications. In order to accurately calculate the stress and the deformation of an oil carrier under wave action, the fluid-structure interaction system in the platform Workbench is used in this work. And, the pressure-based solver, the two-phase flow model and UDF (User Defined Function) in the software FLUENT are used to compile the three-order Stokes Wave so as to simulate ocean waves. Forces acting on the surface of the oil carrier are obtained by calculating the flow field, and the structural strength of the carrier is then investigated under sagging and hogging conditions. The results show that: the three-order Stokes Wave matches well with the theoretical result, and it is feasible to research the strength of the oil carrier by generating waves using this numerical method. In addition, the method of fluid-structure interaction is applied to investigate the structural strength of the fully-loaded carrier under sagging and hogging conditions.


Author(s):  
S. Lehner ◽  
J. Schulz-Stellenfleth ◽  
Thomas Ko¨nig ◽  
X. Li

For the design of ships as well as for the investigation of ship accidents it is important to have knowledge about both the two dimensional spectral wave properties as well as extreme value statistics of ocean waves. Although numerical wave models have reached a high level of accuracy, they still have weaknesses with respect to the details of the 2-D wave spectrum. Furthermore standard models like WAM provide estimates of the 2-D wave spectrum, i.e., second order sea state statistics and therefore lack information on individual wave properties and the occurrence of extreme events. In this study the potential of global Synthetic Aperture Radar (SAR) wave mode data acquired by the European satellites ERS-2 and ENVISAT to investigate ship accidents is discussed and compared to altimeter data and ECMWF model results. These data are acquired independent of light and weather conditions on a global scale. A historic data set of ERS-2 wave mode data acquired between 1998 and 2000 is co-located with accidents which occurred during that time. ENVISAT ASAR wave mode data acquired since 2002 are considered, too. Different ocean wave parameters like significant wave height and wave periods are derived from the SAR data. The potential role of the respective wave conditions for some recent accident is discussed in detail. This includes in particular the analysis of cross sea conditions, groupiness and extreme events.


2020 ◽  
Author(s):  
Alvise Benetazzo ◽  
Francesco Barbariol ◽  
Paolo Pezzutto ◽  
Luciana Bertotti ◽  
Luigi Cavaleri ◽  
...  

<p>Reliable prediction of oceanic waves during severe marine storms has always been foremost for offshore platform design, coastal activities, and navigation safety. Indeed, many damaging accidents and casualties during storms were ascribed to the impact with abnormal and unexpected waves. However, predicting extreme wave occurrence is a challenging task, at first, because of their inherent randomness, and because the observation of large ocean waves, of primary importance to assess theoretical and numerical models, is limited by the costs and risks of deployment during severe open-ocean sea-state conditions.</p><p>In the context of the EU-based Copernicus Marine Environment Monitoring Service (CMEMS) evolution, the LATEMAR project (https://www.mercator-ocean.fr/en/portfolio/latemar/) aimed at improving the modelling of large wave events during marine storms. Indeed, at present, operational systems only provide average and peak wave parameters, with no information on individual waves whatsoever. However, developments of the state-of-the-art third-generation wave models demonstrated that using the directional wave spectrum moments into theoretical statistical models for wave extremes, forecasters are able to accurately infer the expected shape and likelihood of the maximum waves during storms.</p><p>The main purpose of the activity is therefore to provide the wave models WAM and WAVEWATCH III with common procedures to explicitly estimate the maximum wave heights for each sea state. LATEMAR achieved this goal by: performing an extensive assessment of the model maximum waves using field observations collected from an oceanographic tower; comparing WAM and WAVEWATCH III maximum wave estimates in the Mediterranean Sea; investigating the sensitivity of the maximum waves on the main sea state parameters. All model developments and evaluations resulting from this research project will be directly applicable to the wave model forecasting systems to expand their catalogue.</p>


Sign in / Sign up

Export Citation Format

Share Document