Research and Design of Technologies for Reducing Vibration and Noises in a Science Icebreaker

Author(s):  
Yang Yong ◽  
Ma Jie

In accordance with the development of green shipbuilding technologies in the world, a science icebreaker is dealt with vibration isolation system in main generator station on the basis of the characteristics of complex vibration isolation system. The pumps in engine room are adopted with raft isolation system to reduce vibration. Damping materials are utilized to reduce cabin noises in order to improve the inhabited conditions onboard.

2011 ◽  
Vol 328-330 ◽  
pp. 1679-1683
Author(s):  
Jie Li ◽  
Rui Ping Tao ◽  
Jun Liu ◽  
Wei Chen

For the vibration noise problem of strap-down inertial navigation system in the vehicle, a better vibration damping system was designed. Based on the vibration characters of the vehicle environment, a vibration damping model fitted the SINS in the vehicle was presented; and then the mechanism of vibration damping system was designed especially; and then the design of vibration damping system was verified by using of the dynamic characteristic analysis, On the basis of the above analysis, the overall structure of actual vibration isolation system was built, and then the test for the vibration isolation system was made, the results show that the micro-isolation system for the SINS system vibration and noise has a better inhibition effect, and the applicability and the dependability of the vibration damping system is verified by the test results, which provides reference basis for the design of the strap-down inertial navigation damping system in the land vehicle and provides techniques for the better application of SINS in other fields.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


2016 ◽  
Vol 87 (1) ◽  
pp. 633-646 ◽  
Author(s):  
Xinlong Wang ◽  
Jiaxi Zhou ◽  
Daolin Xu ◽  
Huajiang Ouyang ◽  
Yong Duan

2012 ◽  
Vol 30 (6) ◽  
pp. 063201 ◽  
Author(s):  
Katsuya Iwaya ◽  
Ryota Shimizu ◽  
Akira Teramura ◽  
Seiji Sasaki ◽  
Toru Itagaki ◽  
...  

2017 ◽  
Vol 12 (04) ◽  
pp. A04001-A04001 ◽  
Author(s):  
C Lee ◽  
H.S Jo ◽  
C.S Kang ◽  
G.B Kim ◽  
I Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document