Comparison of Umbilical Installation Analysis Using Two Irregular Wave Spectra

Author(s):  
Airindy Felisita ◽  
Ove Tobias Gudmestad ◽  
Lars Olav Martinsen

Umbilicals are widely used to provide monitoring and control functions for distant satellite wellheads in subsea developments. Detailed analysis is required to predict the behavior of the umbilical during the installation process. Finite Element Analysis is performed to determine the limiting operational sea-state for the installation operations. This paper presents work carried out with Acergy Norway AS, comparing two irregular wave spectra that are commonly used for installation analysis in the North Sea. The purpose of the study is to select the most suitable method for the installation analysis with respect to different types of installation operations. Selection is carried out based on several limiting criteria, including top tension, compression, minimum bending radius and the tension at the touchdown point. The JONSWAP spectrum and Torsethaugen spectrum are used to model the physical environment of the North Sea. Both of these spectra are especially designed for North Sea environment. The JONSWAP spectrum represents the fetch-limited (or coastal) wind generated seas, meanwhile the Torsethaugen spectrum represents the wave conditions in open ocean areas where the waves are dominated not only by local wind seas but are also exposed to swells (Torsethaugen and Haver, 2004). Two types of installation operations are selected for this work, which are the “buoyancy overboarding” for dynamic umbilical installation analysis and “normal lay” for static umbilical installation analysis. The analysis shows that the Torsethaugen spectrum generates higher tension forces compared to the JONSWAP spectrum. On the other hand, the JONSWAP spectrum generates higher compression and lower bending radius. However, the differences between the results using these two spectra are not large. This is due to the limited wave height and period applicable for installation operations. This work only covers wave height of Hs = 2.5–4.0 m and wave period of Tp = 6–14 s. The selection of these low conditions is based on typical sea states for installation operation (without consideration of survival conditions). Since there is only small variation on the results from the two spectra, both JONSWAP and Torstehaugen spectra are considered suitable for analysis of installation operations. It is further noted that although the Torstehaugen spectra will often provide a more realistic representation of the physical environment, forecast or measured weather data is rarely presented in this form, therefore the JONSWAP or other single peak spectra must be used for decision making offshore. This study has validated that for the range of condition studied, this is an acceptable approach. The conclusion from this study is only applicable for low sea-states and without considering effects from different direction of wind seas and swells components in the Torsethaugen spectrum. Therefore further work is required to fully asses the impact of directionality between the wave components and the impact of higher sea states which are applicable to survival conditions.

Author(s):  
Arndt Hildebrandt ◽  
Remo Cossu

There are several intentions to analyze the correlation of wind and wave data, especially in the North Sea. Fatigue damage is intensified by wind and wave loads acting from different directions, due to the misaligned aerodynamic damping of the rotor regarding the wave loads from lateral directions. Furthermore, construction time and costs are mainly driven by the operational times of the working vessels, which strongly depend on the wind and wave occurrence and correlation. Turbulent wind can rapidly change its direction and intensity, while the inert water waves react slowly in relation to the wind profile. Tuerk (2008) investigates the impact of wind and turbulence on offshore wind turbines by analyzing data of four years. The study shows that the wave height is increasing with higher wind speeds but when the wind speed drops the reaction of the waves is postponed. The dependence of the wave height on the wind speed is varying because of the atmospheric stability and different wind directions. Fischer et al. (2011) estimated absolute values of misalignment between wind and waves located in the Dutch North Sea. The study presents decreasing misalignment for increasing wind speeds, ranging up to 90 degrees for wind speeds below 12 m/s and up to 30 degrees for wind speeds above 20 m/s. Bredmose et al. (2013) present a method of offshore wind and wave simulation by using metocean data. The study describes characteristics of the wind and wave climate for the North and Baltic Sea as well as the directional distribution of wind and waves. Güner et al. (2013) cover the development of a statistical wave model for the Karaburun coastal zone located at the southwest coast of the Black Sea with the help of wind and wave measurements and showed that the height of the waves is directly correlating with the duration of the wind for the last four hours.


2019 ◽  
Vol 58 (2) ◽  
pp. 315-337 ◽  
Author(s):  
Thomas Cogswell

AbstractHistorians have not paid close attention to the activities of freebooters operating out of Dunkirk in the late 1620s. This essay corrects that omission by first studying the threat from Dunkirk to England's east coast and then addressing how the central government, counties, and coastal towns responded. A surprisingly rich vein of manuscript material from Great Yarmouth and particularly from the Suffolk fishing community of Aldeburgh informs this case study of the impact of this conflict around the North Sea.


2016 ◽  
Vol 13 (3) ◽  
pp. 841-863 ◽  
Author(s):  
H. Brenner ◽  
U. Braeckman ◽  
M. Le Guitton ◽  
F. J. R. Meysman

Abstract. It has been previously proposed that alkalinity release from sediments can play an important role in the carbonate dynamics on continental shelves, lowering the pCO2 of seawater and hence increasing the CO2 uptake from the atmosphere. To test this hypothesis, sedimentary alkalinity generation was quantified within cohesive and permeable sediments across the North Sea during two cruises in September 2011 (basin-wide) and June 2012 (Dutch coastal zone). Benthic fluxes of oxygen (O2), alkalinity (AT) and dissolved inorganic carbon (DIC) were determined using shipboard closed sediment incubations. Our results show that sediments can form an important source of alkalinity for the overlying water, particularly in the shallow southern North Sea, where high AT and DIC fluxes were recorded in near-shore sediments of the Belgian, Dutch and German coastal zone. In contrast, fluxes of AT and DIC are substantially lower in the deeper, seasonally stratified, northern part of the North Sea. Based on the data collected, we performed a model analysis to constrain the main pathways of alkalinity generation in the sediment, and to quantify how sedimentary alkalinity drives atmospheric CO2 uptake in the southern North Sea. Overall, our results show that sedimentary alkalinity generation should be regarded as a key component in the CO2 dynamics of shallow coastal systems.


2008 ◽  
pp. 127-138 ◽  
Author(s):  
Gerrit Burgers ◽  
Frits Koek ◽  
Hans de Vries ◽  
Martin Stam

2021 ◽  
Author(s):  
Bolin Xu ◽  
Qing He ◽  
Kwok Pan Chun ◽  
Julian Klaus ◽  
Rémy Schoppach ◽  
...  

<p>Teleconnections relate regional pressure patterns to local climate anomalies, influencing the variation of vegetation patterns. Over west continental Europe, droughts have been widely investigated with persistent low-frequency atmospheric circulation patterns (e.g. the North Atlantic Oscillation, NAO) with the centers over the Atlantic based on the 500mb height anomalies of the Northern Hemisphere. However, the effects of teleconnection patterns with the centers of active variability over the North and Caspian Seas is largely unexplored for droughts related to vegetation patterns. In this study, we explored the impact of the North Sea-Caspian Pattern (NCP) on regional ecohydrologic conditions in the Greater Region of Luxembourg in Western Europe. Using a Principal Component Analysis (PCA), we first decomposed the annual Normalized Difference Vegetation Index (NDVI) from the Global Inventory Monitoring and Modeling System (GIMMS) between 1981 and 2015. In the first PCA component, a distinctive greening trend of NDVI is detected since the late 1980s. However, the corresponding station observations and the ERA5 reanalysis data show that the region in west continental Europe became increasingly drier based on the difference between precipitation and evaporation. We explain the above paradoxical greening but drying patterns by the mechanism of NCP over the region. During the positive phase of NCP, the high pressure over the North Sea weakens circulation over the region and leads to warmer conditions in west continental Europe. These conditions are good for vegetation growth because the region was mainly energy-limited during the observed period at the annual scale based on a Budyko analysis. However, the positive phase of NCP also promotes divergent conditions at the lower troposphere and it reduces moisture flux over the region. In the Budyko space, the persistent positive phase of NCP would lead the energy-limited region to be water-limited. As the positive phase of NCP is expected to be more frequent along with the increasing global temperatures, the region may start to experience increasing water stress on vegetation. These results suggest that unforeseen droughts related to vegetation may be emerging in the region. New drought monitoring and management measures related to vegetation should be developed at west continental Europe, especially during the positive phase of NCP.</p>


2016 ◽  
Vol 13 (8) ◽  
pp. 2511-2535 ◽  
Author(s):  
Fabian Große ◽  
Naomi Greenwood ◽  
Markus Kreus ◽  
Hermann-Josef Lenhart ◽  
Detlev Machoczek ◽  
...  

Abstract. Low oxygen conditions, often referred to as oxygen deficiency, occur regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen, yet, lowest oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratification is an important prerequisite for oxygen deficiency, but that the complex interaction between hydrodynamics and the biological processes drives its evolution. In this study we use the ecosystem model HAMSOM-ECOHAM to provide a general characterisation of the different zones of the North Sea with respect to oxygen, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics inside the entire sub-thermocline volume and directly above the bottom. With respect to oxygen dynamics, the North Sea can be subdivided into three different zones: (1) a highly productive, non-stratified coastal zone, (2) a productive, seasonally stratified zone with a small sub-thermocline volume, and (3) a productive, seasonally stratified zone with a large sub-thermocline volume. Type 2 reveals the highest susceptibility to oxygen deficiency due to sufficiently long stratification periods (>  60 days) accompanied by high surface productivity resulting in high biological consumption, and a small sub-thermocline volume implying both a small initial oxygen inventory and a strong influence of the biological consumption on the oxygen concentration. Year-to-year variations in the oxygen conditions are caused by variations in primary production, while spatial differences can be attributed to differences in stratification and water depth. The large sub-thermocline volume dominates the oxygen dynamics in the northern central and northern North Sea and makes this region insusceptible to oxygen deficiency. In the southern North Sea the strong tidal mixing inhibits the development of seasonal stratification which protects this area from the evolution of low oxygen conditions. In contrast, the southern central North Sea is highly susceptible to low oxygen conditions (type 2). We furthermore show that benthic diagenetic processes represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50 % of the overall consumption. Thus, primary production followed by remineralisation of organic matter under stratified conditions constitutes the main driver for the evolution of oxygen deficiency in the southern central North Sea. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the estimation of the impact of anthropogenic drivers on the North Sea oxygen conditions.


2020 ◽  
Vol 77 (5) ◽  
pp. 1772-1786 ◽  
Author(s):  
A D Rijnsdorp ◽  
J G Hiddink ◽  
P D van Denderen ◽  
N T Hintzen ◽  
O R Eigaard ◽  
...  

Abstract Fisheries using bottom trawls are the most widespread source of anthropogenic physical disturbance to seafloor habitats. To mitigate such disturbances, the development of fisheries-, conservation-, and ecosystem-based management strategies requires the assessment of the impact of bottom trawling on the state of benthic biota. We explore a quantitative and mechanistic framework to assess trawling impact. Pressure and impact indicators that provide a continuous pressure–response curve are estimated at a spatial resolution of 1 × 1 min latitude and longitude (∼2 km2) using three methods: L1 estimates the proportion of the community with a life span exceeding the time interval between trawling events; L2 estimates the decrease in median longevity in response to trawling; and population dynamic (PD) estimates the decrease in biomass in response to trawling and the recovery time. Although impact scores are correlated, PD has the best performance over a broad range of trawling intensities. Using the framework in a trawling impact assessment of ten métiers in the North Sea shows that muddy habitats are impacted the most and coarse habitats are impacted the least. Otter trawling for crustaceans has the highest impact, followed by otter trawling for demersal fish and beam trawling for flatfish and flyshooting. Beam trawling for brown shrimps, otter trawling for industrial fish, and dredging for molluscs have the lowest impact. Trawling is highly aggregated in core fishing grounds where the status of the seafloor is low but the catch per unit of effort (CPUE) per unit of impact is high, in contrast to peripheral grounds, where CPUE per unit of impact is low.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


Sign in / Sign up

Export Citation Format

Share Document