Numerical and Experimental Study of a Flexible Pipe Under Torsion

Author(s):  
He´ctor E. M. Merino ◽  
Jose´ Renato M. de Sousa ◽  
Carlos Magluta ◽  
Ney Roitman

The torsional behavior of a 4″ flexible pipe is here studied. The pipe was subjected to clockwise and anticlockwise torsion and also to torsion combined with tension. For pure torsion, two different boundary conditions were considered: ends free to elongate and prevented from elongating. When tensional and torsional loads are imposed to the pipe, only analyses with ends prevented from elongating are carried out. In all cases, the response of the pipe is predicted with a three-dimensional nonlinear finite element (FE) model and with a classical analytical model. Experimental tests performed at COPPE/UFRJ are also employed to validate the theoretical estimations. The obtained results point out that the pipe is torque balanced for clockwise torsion, but it is not balanced for anti-clockwise torsion. Moreover, analytical models for axissymetric analyses assume that the layers of a flexible pipe are subjected to the same twist and elongation, but the FE results state that this hypothesis holds only for anti-clockwise torsion. Therefore, some differences were found between the FE and analytical models mainly when clockwise torsion is considered. Finally, due to its ability to deal with friction and adhesion between layers, the FE estimations agreed quite well with the experimental measures.

Author(s):  
Héctor E. M. Muñoz ◽  
José R. M. de Sousa ◽  
Carlos Magluta ◽  
Ney Roitman

In this paper, the coupled extensional–torsional behavior of a 4 in. flexible pipe is studied. The pipe is subjected to pure tension and two different boundary conditions are considered: ends free and prevented from axially rotating. The response of the pipe is predicted with a three-dimensional nonlinear finite element (FE) model. Some aspects of the obtained results are discussed, such as the effect of restraining the axial rotation at the extreme sections of the model; the effect of friction or adhesion between the layers of the pipe on the induced axial rotation (or torque) and elongation; and the reduction to simple plane behavior usually assumed by analytical models. The numerical results are compared to the ones measured in experimental tests. Reasonable agreement is observed between all results pointing out that the analyzed pipe is torque balanced and that friction mainly affects the axial twist induced by the applied tension. Moreover, the cross sections of the pipe remain straight with the imposed load, but different axial rotations are found in each layer.


Author(s):  
He´ctor E. M. Merino ◽  
Jose´ R. M. de Sousa ◽  
Carlos Magluta ◽  
Ney Roitman

In this paper, the coupled extensional-torsional behavior of a 4″ flexible pipe is studied. The pipe was subjected to pure tension and two different boundary conditions were considered: ends free and prevented from axially rotating. The response of the pipe is predicted with a three-dimensional nonlinear finite element (FE) model. Some aspects of the obtained results are discussed, such as: the effect of restraining the axial rotation at the extreme sections of the model; the effect of friction or adhesion between the layers of the pipe on the induced axial rotation (or torque) and elongation; and the reduction to simple plane behavior usually assumed by analytical models. The numerical results are compared to the ones measured in experimental tests performed at COPPE/UFRJ. Reasonable agreement is observed between all results pointing out that the analyzed pipe is torque balanced and that friction mainly affects the axial twist or torque led by the applied tension. Moreover, the cross-sections of the pipe remain straight with the imposed load, but different axial rotations are found in each layer.


Author(s):  
José Renato M. de Sousa ◽  
Carlos Magluta ◽  
Ney Roitman ◽  
George C. Campello

This work focuses on the structural analysis of a damaged 9.13″ flexible pipe to pure and combined axisymmetric loads. A set of experimental tests was carried out considering one up to ten broken wires in the outer tensile armor of the pipe and the results obtained are compared to those provided by a previously presented finite element (FE) model and a traditional analytical model. In the experimental tests, the pipe was firstly subjected to pure tension and, then, the responses to clockwise and anti-clockwise torsion superimposed with tension were investigated. In these tests, the induced strains in the outer armor were measured. Moreover, the axial elongation of the pipe was monitored when the pipe is subjected to tension, whilst the twist of the pipe was measured when torsion is imposed. The experimental results pointed to a slight decrease in the stiffness of the pipe with the increasing number of broken wires and, furthermore, a redistribution of forces among the intact wires of the damaged layer with high stress concentration in the wires close to the damaged ones. Both theoretical models captured these features, but, while the results obtained with the FE model agreed well with the experimental measurements, the traditional analytical model presented non-conservative results. Finally, the results obtained are employed to estimate the load capacity of the pipe.


2017 ◽  
Vol 7 ◽  
pp. 267-272
Author(s):  
Beril Demir Karamanli ◽  
Hülya Kılıçoğlu ◽  
Armağan Fatih Karamanli

Aims The aim of this study was to evaluate the biomechanical effects on the craniofacial complex of skeletal anchorage and dental anchorage during face mask therapy. Subjects and Methods Two nonlinear finite element (FE) simulations were performed using a three-dimensional FE model. Face mask therapy with dental anchorage in the upper canines and face mask therapy with skeletal anchorage in the piriform apertures of the maxilla were simulated. In both simulations, the magnitude of the applied force was 750 g per side, and the force direction was 30° forward and downward relative to the occlusal plane. Results The circummaxillary sutures showed greater and more uniform stresses in the skeletal anchorage model than the dental anchorage model. This is the result of the more parallel forward movement of the maxilla in the skeletal anchorage model. Conclusions In Class III malocclusions with maxillary deficiency, for improved effects on the maxilla, choosing skeletal anchorage may be more effective in face mask therapies


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Linbo Zhu ◽  
Abdel-Hakim Bouzid ◽  
Jun Hong

Bolted flange joints are widely used to connect pressure vessels and piping equipment together and facilitate their disassembly. Initial tightening of their bolts is a delicate operation because it is extremely difficult to achieve the target load and uniformity due to elastic interaction. The risk of failure due to leakage and fatigue under service loading is consequently increased. This paper presents a study on the effect of elastic interaction that is present during the tightening of bolted flange joints using three-dimensional nonlinear finite-element modeling and experimentation. The nonlinear nonelastic behavior of the gasket is taken into account in the numerical simulation. The scatter in bolt preload produced during the tightening sequence is evaluated. Based on the elastic interaction coefficient method, the initial target tightening load in each bolt for every pass is determined by using the nonlinear finite-element model to obtain a uniform preload after the final tightening pass. The validity of the finite-element analysis (FEA) is supported by experimental tests conducted on a NPS 4 class 900 weld neck bolted flange joints using fiber and flexible graphite gaskets. This study provides guidance and enhances the safety and reliability of bolted flange joints by minimizing bolt load scatter due to elastic interaction.


Author(s):  
Jose´ Renato M. de Sousa ◽  
Paula F. Viero ◽  
Carlos Magluta ◽  
Ney Roitman

This paper deals with a nonlinear three-dimensional finite element (FE) model capable of predicting the mechanical response of flexible pipes subjected to axisymmetric loads focusing on their axial compression response. Moreover, in order to validate this model, experimental tests carried out at COPPE/UFRJ are also described. In these tests, a typical 4″ flexible pipe was subjected to axial compression until its failure is reached. Radial and axial displacements were measured and compared to the model predictions. The good agreement between all obtained results points that the proposed FE model is efficient to estimate the response of flexible pipes to axial compression and, furthermore, has potential to be employed in the identification of the failure modes related to excessive axial compression as well as in the mechanical analysis of flexible pipes under other types of loads.


Author(s):  
Islam M. Soliman ◽  
Michael J. Tait ◽  
Ashraf A. El Damatty

Implementation of supplemental damping systems (e.g., the dynamic vibration absorbers (DVAs)) to mitigate excessive tall building vibrations induced by external dynamic loads (wind storms or earthquakes) has increased over the last several decades. A tuned liquid damper (TLD) is a specific type of the DVAs that consists of a rigid tank which is partially filled with a liquid, usually water. The sloshing liquid inside the tank provides inertia forces that counteract the forces acting on the structure, thus reducing the building motion. A single sway mode of vibration is usually targeted, however, for certain structures multiple modes may need to be suppressed. Moreover, the location of the TLD on the floor plate is important for certain modes, such as a torsionally dominate mode. In this paper, a three-dimensional (3D) finite element (FE) structure-TLD system model (3D-structure-TLD) is proposed where the TLDs can be positioned at any location on the structure allowing the most effective positions in reducing the structure's dynamic response to be determined. Therefore, the response of a 3D structure (tower, high-rise building, bridge, etc.) fitted with single or multiple TLD(s) and subjected to dynamic excitation can be predicted using the proposed FE model. For torsionally sensitive structure (eccentric/irregular structures), this type of 3D numerical analysis is highly recommended. Two nonlinear TLD models are employed to simulate the TLD and implemented in the FE model. The 3D-structure-TLD system model is validated for the cases of sinusoidal and random excitation forces using existing experimental test values. Results from the 3D-structure-TLD system model are found to be in excellent agreement with values obtained from experimental tests.


Author(s):  
José Renato M. de Sousa ◽  
Marcelo K. Protasio ◽  
Luis V. S. Sagrilo

The hydrostatic collapse strength of a flexible pipe is largely dependent on the ability of its carcass and pressure armor to resist radial loading and, therefore, its prediction involves an adequate modeling of these layers. Hence, initially, this work proposes a set of equations to estimate equivalent thicknesses and physical properties for these layers, which allows their modeling as equivalent orthotropic cylinders. These equations are obtained by simulating several two-point static ring tests with a three-dimensional finite element (FE) model based on beam elements and using these results to form datasets that are analyzed with a symbolic regression (SR) tool. The results of these analyses are the closed-form equations that best fit the provided datasets. After that, these equations are used in conjunction with a three-dimensional shell FE model and a previously presented analytical model to study the dry and wet hydrostatic collapse mechanisms of a flexible pipe. The predictions of these models agreed quite well with the collapse pressures obtained in experimental tests thus indicating that the use of the equivalent approach is promising.


Author(s):  
José Renato M. de Sousa ◽  
Paula F. Viero ◽  
Carlos Magluta ◽  
Ney Roitman

This paper deals with a nonlinear three-dimensional finite element (FE) model capable of predicting the mechanical response of flexible pipes subjected to axisymmetric loads focusing on their axial compression response. Moreover, in order to validate this model, experimental tests are also described. In these tests, a typical 4 in. flexible pipe was subjected to axial compression until its failure is reached. Radial and axial displacements were measured and compared to the model predictions. The good agreement between all results points out that the proposed FE model is effective to estimate the response of flexible pipes to axial compression and; furthermore, has potential to be employed in the identification of the failure modes related to excessive axial compression as well as in the mechanical analysis of flexible pipes under other types of loads.


Author(s):  
Linbo Zhu ◽  
Abdel-Hakim Bouzid ◽  
Jun Hong

Bolted flange joints are widely used to connect pressure vessels and piping equipment together and facilitate their disassembly. Initial tightening of their bolts is a delicate operation because it is extremely difficult to achieve the target load and uniformity due to elastic interaction. The risk of failure due to leakage and fatigue under service loading is consequently increased. This paper presents a study on the effect of elastic interaction that is present during the tightening of a bolted flange joints using three-dimensional nonlinear finite element modeling and experimentation. The nonlinear non-elastic behavior of the gasket is taken into account in the numerical simulation. The scatter in bolt preload produced during the tightening sequence is evaluated. Based on the elastic interaction coefficient method, the initial target tightening load in each bolt for every pass are determined by using the nonlinear finite element model to obtain a uniform preload after the final tightening pass. The validity of the FEA (Finite Element Analysis) is supported by experimental tests conducted on a NPS 4 class 900 weld neck bolted flange joints using fiber and flexible graphite gaskets. This study provides guidance and enhances the safety and reliability of bolted flange joints by minimizing bolt scatter due to elastic interaction.


Sign in / Sign up

Export Citation Format

Share Document