On the Vortex-Induced Vibration Response of a Model Riser and Location of Sensors for Fatigue Damage Prediction

Author(s):  
C. Shi ◽  
L. Manuel ◽  
M. A. Tognarelli ◽  
T. Botros

This study is concerned with vortex-induced vibration (VIV) of deepwater marine risers. Riser response measurements from model tests on a densely instrumented long, flexible riser in uniform and sheared currents offer an almost ideal set-up for our work. Our objectives are two-fold: (i) we use the measured data to describe complexities inherent in riser motions accompanying VIV; and (ii) we discuss how such data sets (and even less spatially dense monitoring) can be used effectively in predicting fatigue damage rates which is of critical interest for deepwater risers. First, we use mathematical tools including Hilbert and wavelet transforms to estimate instantaneous amplitudes and phases of cross-flow (CF) and in-line (IL) displacements for the model riser as well as scalograms to understand time-frequency characteristics of the response; this work confirms that the motion of a long flexible cylinder is far more complex than that of a rigid cylinder, and that non-stationary characteristics, higher harmonics, and traveling waves are evident in the riser response. Second, a well-established empirical procedure, which we refer to as Weighted Waveform Analysis (WWA), is employed to estimate the fatigue damage rate at various locations along the length of the riser from strain measurements at only eight sensors. By iterating over numerous different combinations of these eight strain sensors as inputs (from among all the twenty-four available locations on the riser), optimal locations for the eight sensors on the riser are identified by cross-validation, whereby predicted strains and fatigue damage rates at locations of instrumented sensors are compared with strains and fatigue damage rates based on actual recorded measurements there. We find that, if properly placed, as few as eight sensors can provide reasonably accurate estimates of the fatigue damage rate over the entire riser length. Finally, we demonstrate how more accurate fatigue damage prediction can result when non-stationary response characteristics are considered and a modified WWA method (that more effectively accounts for traveling waves than the WWA method alone does) is employed.

Author(s):  
C. Shi ◽  
L. Manuel ◽  
M. A. Tognarelli

Vortex-induced vibration (VIV) is a topic of great importance in fatigue damage assessment and life prediction for marine risers. In order to gain insight into riser motions and estimated fatigue damage due to VIV, data loggers such as strain sensors and/or accelerometers are sometimes installed on risers to monitor their motion in different current velocity conditions. Accurate reconstruction of the riser response and empirical estimation of fatigue damage rates over the entire riser length using measurements from a limited number of sensors is important for efficient utilization of the costly measurements recorded. In this study, different empirical methods are employed to analyze the VIV response of a long flexible cylinder subjected to uniform and sheared current profiles. The methods include weighted waveform analysis (WWA), proper orthogonal decomposition (POD), modal phase reconstruction (MPR), a modified WWA procedure, and a hybrid method which combines MPR and the modified WWA method. Fatigue damage rates estimated using these different empirical methods are compared and cross-validated against measurements. Formulations for each method are briefly presented and discussed with examples. Results show that all the empirical methods, despite different underlying assumptions in each of them, can be employed to estimate fatigue damage rates quite well from limited strain measurements.


2018 ◽  
Vol 8 (11) ◽  
pp. 2085 ◽  
Author(s):  
Chen Shi ◽  
Lance Manuel ◽  
Michael Tognarelli

To gain insight into riser motions and associated fatigue damage due to vortex-induced vibration (VIV), data loggers such as strain sensors and/or accelerometers are sometimes deployed on risers to monitor their motion in different current velocity conditions. Accurate reconstruction of the riser response and empirical estimation of fatigue damage rates over the entire riser length using measurements from a limited number of sensors can help in efficient utilization of the costly measurements recorded. Several different empirical procedures are described here for analysis of the VIV response of a long flexible cylinder subjected to uniform and sheared current profiles. The methods include weighted waveform analysis (WWA), proper orthogonal decomposition (POD), modal phase reconstruction (MPR), a modified WWA procedure, and a hybrid method which combines MPR and the modified WWA method. Fatigue damage rates estimated using these different empirical methods are compared and cross-validated against measurements. Detailed formulations for each method are presented and discussed with examples. Results suggest that all the empirical methods, despite different underlying assumptions in each of them, can be employed to estimate fatigue damage rates quite well from limited strain measurements.


Author(s):  
Chen Shi ◽  
Lance Manuel ◽  
Michael Tognarelli

To gain insight into riser motions and associated fatigue damage due to vortex-induced vibration (VIV), data loggers such as strain sensors and/or accelerometers are sometimes deployed on risers to monitor their motion in different current velocity conditions. Accurate reconstruction of the riser response and empirical estimation of fatigue damage rates over the entire riser length using measurements from a limited number of sensors can help in efficient utilization of the costly measurements recorded. Several different empirical procedures are described here for analysis of the VIV response of a long flexible cylinder subjected to uniform and sheared current profiles. The methods include weighted waveform analysis (WWA), proper orthogonal decomposition (POD), modal phase reconstruction (MPR), a modified WWA procedure, and a hybrid method which combines MPR and the modified WWA method. Fatigue damage rates estimated using these different empirical methods are compared and cross-validated against measurements. Detailed formulations for each method are presented and discussed with examples. Results suggest that all the empirical methods, despite different underlying assumptions in each of them, can be employed to estimate fatigue damage rates quite well from limited strain measurements.


Author(s):  
J. Kim Vandiver ◽  
Susan B. Swithenbank ◽  
Vivek Jaiswal ◽  
Vikas Jhingran

This paper presents results from two field experiments using long flexible cylinders, suspended vertically from surface vessels. The experiments were designed to investigate vortex-induced vibration (VIV) at higher than tenth mode in uniform and sheared flows. The results of both experiments revealed significant vibration energy at the expected Strouhal frequency (referred to in this paper as the fundamental frequency) and also at two and three times the Strouhal frequency. Although higher harmonics have been reported before, this was the first time that the contribution to fatigue damage, resulting from the third harmonic, could be estimated with some certainty. This was enabled by the direct measurement of closely spaced strain gauges in one of the experiments. In some circumstances the largest RMS stress and fatigue damage due to VIV are caused by these higher harmonics. The total fatigue damage rate including the third harmonic is shown to be up to forty times greater than the damage rate due to the vibration at the fundamental vortex-shedding frequency alone. This dramatic increase in damage rate due to the third harmonic appears to be associated with a narrow range of reduced velocities in regions of the pipe associated with significant flow-induced excitation.


Author(s):  
F. Van den Abeele ◽  
F. Boël ◽  
M. Hill

Vortex induced vibration is a major cause of fatigue failure in submarine oil and gas pipelines and steel catenary risers. Even moderate currents can induce vortex shedding, alternately at the top and bottom of the pipeline, at a rate determined by the flow velocity. Each time a vortex sheds, a force is generated in both the in-line and cross-flow direction, causing an oscillatory multi-mode vibration. This vortex induced vibration can give rise to fatigue damage of submarine pipeline spans, especially in the vicinity of the girth welds. In this paper, an integrated numerical framework is presented to predict and identify free spans that may be vulnerable to fatigue damage caused by vortex induced vibrations (VIV). An elegant and efficient algorithm is introduced to simulate offshore pipeline installation on an uneven seabed. Once the laydown simulation has been completed, the free spans can be automatically detected. When the fatigue screening for both inline and cross-flow VIV indicates that a particular span may be prone to vortex induced vibrations, a detailed fatigue analysis is required. Amplitude response models are constructed to predict the maximum steady state VIV amplitudes for a given pipeline configuration (mechanical properties) and sea state (hydrodynamic parameters). The vibration amplitudes are translated into corresponding stress ranges, which then provide an input for the fatigue analysis. A case study from the offshore industry is presented, and sensitivity analyses are performed to study the influence of the seabed conditions, where special emphasis is devoted on the selection of pipe soil interaction parameters.


Author(s):  
Weiping Huang ◽  
Weihong Yu

In this paper, an experimental study on the in-line and cross-flow vortex-induced vibration (VIV) of flexible cylinders is conducted. The relationship of two-degree-of-freedoms of vortex-induced vibration of flexible cylinders is also investigated. The influence of natural frequency of flexible cylinders on vortex shedding and VIV are studied through the experiment in this paper. Finally, A nonlinear model, with fluid-structure interaction, of two-degree-of-freedom VIV of flexible cylinders is proposed. It is shown that the ratio of the frequencies and amplitudes of in-line and cross flow VIV of the flexible cylinders changes with current velocity and Reynolds number. The natural frequency of flexible cylinder has great influence on the vortex-induced virbation due to the strong fluid-structure coupling effect. Under given current velocity, the natural frequency of flexible cylinder determines its forms of vibration (in circular or ‘8’ form). The ratio of the VIV frequencies is 1.0 beyond the lock in district and 2.0 within the lock in district respectively. And the ratio of the VIV amplitudes is 1.0 beyond the lock in district and 1/3 to 2/3 within the lock in district. The results from this paper indicates that in-line vibration should be considerated when calculating the vibration response and fatigue damage.


Author(s):  
Wei Yang ◽  
Chuanzhen Ma ◽  
Zhuang Kang ◽  
Cheng Zhang ◽  
Shaojie Li

Abstract In order to understand the relation between top-motion and VIV of flexible risers, this paper presents an experimental investigation on concomitant vortex-induced vibration and top-motion excitation with flexible risers. The riser can was mounted vertically, with the diameter of 2 cm and the length of 5 m. The responses of amplitude, frequency and other parameters were analyzed in detail under conditions of different excitation amplitude and frequency in uniform flow. It was found that the concomitant VIV and top-motion excitation significantly affects the flexible cylinder response when compared to the pure VIV tests. The amplitude analysis results show that when the reduced velocity is small (less than about 15), the top-motion excitation has an important influence on amplitude of in-line directions. However, the excitation amplitude and frequency of in-line direction have a little influence on amplitude of cross flow direction. The frequency analysis results show that when the reduced velocity is small (less than about 5), the riser motion amplitude is small and irregular in different excitation and when the reduced velocity is large (5 < Ur < 55), the in-line vibration frequency is two times the cross-flow vibration frequency. A strong connection between the top-motion excitation frequency and the vibration frequency was also found. Overall, some phenomena and characteristics observed in the VIV considering top-motion excitation are different from those in classic VIV, which may provide basic reference for the VIV investigation involving the effect of floating bodies.


Sign in / Sign up

Export Citation Format

Share Document