Motion Response Control of the DWSC Spar Based on State-Space Model

Author(s):  
Xiaochuan Yu ◽  
Jeffrey Falzarano

In 2007, the Office of Naval Research (ONR) started a technology development program called STLVAST (Small to Large Vessel At-Sea Transfer), in order to develop ‘enabling capabilities’ in the realm of logistic transfer (i.e. stores, equipment, vehicles) between a large transport vessel and a smaller T-craft ship, using a Deep Water Stable Crane (DWSC) spar between them. In this paper, the equation of motions of the single DWSC spar is initially expressed as the standard state-space model. Then the ODE solver of Matlab is directly employed to obtain the motion responses at each time step. Two levels of approximation of hydrodynamic coefficients are considered in this study. One is the Constant Coefficient Method (CCM), and the other one is the Impulse Response Function (IRF) method, with fluid memory effects considered. WAMIT software is used to calculate the hydrodynamic coefficients, including the added mass, radiation damping, IRF, the first order and second order waves loads transfer functions, etc. The motion response control is achieved by assuming the thrusters can provide the optimal feedback force derived from Linear Quadratic Regulator (LQR) method.

2005 ◽  
Vol 15 (09) ◽  
pp. 2717-2746 ◽  
Author(s):  
THOR I. FOSSEN

This article presents a unified state-space model for ship maneuvering, station-keeping, and control in a seaway. The frequency-dependent potential and viscous damping terms, which in classic theory results in a convolution integral not suited for real-time simulation, is compactly represented by using a state-space formulation. The separation of the vessel model into a low-frequency model (represented by zero-frequency added mass and damping) and a wave-frequency model (represented by motion transfer functions or RAOs), which is commonly used for simulation, is hence made superfluous.


Author(s):  
G. Rigatos ◽  
M. Abbaszadeh ◽  
K. Busawon ◽  
Z. Gao ◽  
J. Pomares

This paper proposes a nonlinear optimal control approach for mulitple degrees of freedom (DOF) brachiation robots, which are often used in inspection and maintenance tasks of the electric power grid. Because of the nonlinear and multivariable structure of the related state-space model, as well as because of underactuation, the control problem of these robots is nontrivial. The dynamic model of the brachiation robots undergoes first approximate linearization with the use of Taylor series expansion around a temporary operating point which is recomputed at each iteration of the control method. For the approximately linearized model, an H-infinity feedback controller is designed. The linearization procedure relies on the Jacobian matrices of the brachiation robots’ state-space model. The proposed control method stands for the solution of the optimal control problem for the nonlinear and multivariable dynamics of the brachiation robots, under model uncertainties and external perturbations. For the computation of the controller’s feedback gains an algebraic Riccati equation is solved at each time-step of the control method. The global stability properties of the control scheme are proven through Lyapunov analysis. The new nonlinear optimal control approach achieves fast and accurate tracking for all state variables of the brachiation robots, under moderate variations of the control inputs.


Author(s):  
Lingnan Hu ◽  
Alan Palazzolo

The authors present an improved modeling approach to analyze the coupled rotor-support dynamics by modeling the rotor with solid finite elements (FEs) and utilizing multiple-input and multiple-output transfer functions (TFs) to represent the flexible support. A state-space model is then employed to perform general rotordynamic analyses. Transfer functions are used to simulate dynamic characteristics of the support structure, including cross-coupling between degrees-of-freedom. These TFs are derived by curve-fitting the frequency response functions of the support model at bearing locations. The impact of the polynomial degree of the TF on the response analysis is discussed, and a general rule is proposed to select an adequate polynomial degree. To validate the proposed approach, a comprehensive comparison between the complete solid FE rotor-support model (CSRSM) and the reduced state-space model (RSSM) is presented. Comparisons are made between natural frequencies, critical speeds, unbalance response, logarithmic decrement, and computation time. The results show that the RSSM provides a dynamically accurate approximation of the solid FE model in terms of rotordynamic analyses. Moreover, the computation time for the RSSM is reduced to less than 20% of the time required for the CSRSM. In addition, the modes up to 100,000 cpm are compared among the super-element, beam element, and RSSM. The results show that the RSSM is more accurate in predicting high-frequency modes than the other two approaches. Further, the proposed RSSM is useful for applications in vibration control and active magnetic bearing systems.


Author(s):  
Mahyar Akbari ◽  
Abdol Majid Khoshnood ◽  
Saied Irani

In this article, a novel approach for model-based sensor fault detection and estimation of gas turbine is presented. The proposed method includes driving a state-space model of gas turbine, designing a novel L1-norm Lyapunov-based observer, and a decision logic which is based on bank of observers. The novel observer is designed using multiple Lyapunov functions based on L1-norm, reducing the estimation noise while increasing the accuracy. The L1-norm observer is similar to sliding mode observer in switching time. The proposed observer also acts as a low-pass filter, subsequently reducing estimation chattering. Since a bank of observers is required in model-based sensor fault detection, a bank of L1-norm observers is designed in this article. Corresponding to the use of the bank of observers, a two-step fault detection decision logic is developed. Furthermore, the proposed state-space model is a hybrid data-driven model which is divided into two models for steady-state and transient conditions, according to the nature of the gas turbine. The model is developed by applying a subspace algorithm to the real field data of SGT-600 (an industrial gas turbine). The proposed model was validated by applying to two other similar gas turbines with different ambient and operational conditions. The results of the proposed approach implementation demonstrate precise gas turbine sensor fault detection and estimation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ji Chol ◽  
Ri Jun Il

Abstract The modeling of counter-current leaching plant (CCLP) in Koryo Extract Production is presented in this paper. Koryo medicine is a natural physic to be used for a diet and the medical care. The counter-current leaching method is mainly used for producing Koryo medicine. The purpose of the modeling in the previous works is to indicate the concentration distributions, and not to describe the model for the process control. In literature, there are no nearly the papers for modeling CCLP and especially not the presence of papers that have described the issue for extracting the effective components from the Koryo medicinal materials. First, this paper presents that CCLP can be shown like the equivalent process consisting of two tanks, where there is a shaking apparatus, respectively. It allows leachate to flow between two tanks. Then, this paper presents the principle model for CCLP and the state space model on based it. The accuracy of the model has been verified from experiments made at CCLP in the Koryo Extract Production at the Gang Gyi Koryo Manufacture Factory.


Sign in / Sign up

Export Citation Format

Share Document