Comparison of Experimental Data of a Moored Multibody Wave Energy Device With a Hybrid CFD and BIEM Numerical Analysis Framework

Author(s):  
Ali Nematbakhsh ◽  
Constantine Michailides ◽  
Zhen Gao ◽  
Torgeir Moan

In the present paper, a hybrid Computational Fluid Dynamics (CFD) and Boundary Integral Element Method (BIEM) framework is developed in order to study the response of a moored Multibody wave Energy Device (MED) to a panchromatic sea state. The relevant results are the surge and heave responses of the MED. The Numerical Analysis Framework (NAF) includes two different models; the first model uses Navier-Stokes equations to describe the flow field and is solved with an in-house CFD code to quantify the viscous damping effect, while the second model uses boundary-integral equation method and is solved with the tool WAMIT\SIMO\RIFLEX. By studying the free decay tests with the Navier-Stokes based model, the uncoupled linear and quadratic damping coefficients of the MED in surge and heave directions are calculated. These coefficients are given as input to the WAMIT\SIMO\RIFLEX model and the responses of the MED to different wave conditions are determined. These responses are compared with the experimental data and very good agreement is obtained. The MED responses calculated by the presented NAF have been obtained in connection with a hydrodynamic modeling competition and selected as one of the numerical models, which well predict the blind experimental data that were unknown to the authors.

Author(s):  
Injun Yang ◽  
Tahsin Tezdogan ◽  
Atilla Incecik

Abstract Wave energy is sustainable and clean energy, so it has great potential to be an eco-friendly and lasting renewable energy resource in the future. Recently, a number of researchers have investigated different types of wave energy converters (WECs) using numerical models such as potential theory and Computational Fluid Dynamics (CFD) to enhance the efficiency of such devices. In this paper, a validation of a point absorber type WECs is investigated to capture the movement of the WEC system and to measure the moment on the WEC system. The WEC consists of a lever and a buoy. The geometry is the same as the existing experimental geometry of the reference in order to validate the present numerical simulation. The buoy is connected to the lever and has a hinge on the connection point. Besides, another hinge is installed in the middle of the lever, and the WEC system rotates in the pitch direction. The commercial CFD package Star-CCM+, which solves Reynolds-Averaged Navier-Stokes equations, is employed in this study. In the initial stages of this research, a validation study against published experimental results was conducted. The rotational displacement and the moment on the buoy were compared with the existing experimental data of the reference. The result shows good agreement. In the near future, a study on a new pivoted point absorber WEC device regarding the buoy shape of the WEC device and an operation principle will be performed based on this numerical study.


Author(s):  
B. Elie ◽  
G. Reliquet ◽  
P.-E. Guillerm ◽  
O. Thilleul ◽  
P. Ferrant ◽  
...  

This paper compares numerical and experimental results in the study of the resonance phenomenon which appears between two side-by-side fixed barges for different sea-states. Simulations were performed using SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach and results are compared with experimental data on two fixed barges with different headings and bilges. Numerical results, obtained using the SWENSE approach, are able to predict both the frequency and the magnitude of the RAO functions.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


Acta Numerica ◽  
2000 ◽  
Vol 9 ◽  
pp. 39-131 ◽  
Author(s):  
K. A. Cliffe ◽  
A. Spence ◽  
S. J. Tavener

In this review we discuss bifurcation theory in a Banach space setting using the singularity theory developed by Golubitsky and Schaeffer to classify bifurcation points. The numerical analysis of bifurcation problems is discussed and the convergence theory for several important bifurcations is described for both projection and finite difference methods. These results are used to provide a convergence theory for the mixed finite element method applied to the steady incompressible Navier–Stokes equations. Numerical methods for the calculation of several common bifurcations are described and the performance of these methods is illustrated by application to several problems in fluid mechanics. A detailed description of the Taylor–Couette problem is given, and extensive numerical and experimental results are provided for comparison and discussion.


1990 ◽  
Vol 43 (5S) ◽  
pp. S240-S245 ◽  
Author(s):  
N. Aubry

The proper orthogonal decomposition (POD), also called Karhunen-Loe`ve expansion, which extracts ‘coherent structures’ from experimental data, is a very efficient tool for analyzing and modeling turbulent flows. It has been shown that it converges faster than any other expansion in terms of kinetic energy (Lumley 1970). First, the POD is applied to the chaotic solution of the Lorenz equations. The dynamics of the Lorenz attractor is reconstructed by only the first three POD modes. In the second part of this paper, we show how the POD can be used in turbulence modeling. The particular case studied is the wall region of a turbulent boundary layer. In this flow, the velocity field is expanded into POD modes in the normal direction and Fourier modes in the streamwise and spanwise directions. Dynamical systems are obtained by Galerkin projections of the Navier Stokes equations onto the different modes. Aubry et al. (1988) applied the technique to derive and study a ten dimensional representation which reproduced qualitatively the bursting event experimentally observed. It is shown that streamwise modes, absent in Aubry et al.’s model, participate to the bursting events. This agrees remarkably well with experimental observations. In both examples, the dynamics of the original system is very well recovered from the contribution of only a few modes.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


Sign in / Sign up

Export Citation Format

Share Document