Numerical Study on the Effect of Tandem Spacing on Flow Induced Motions of Two Cylinders With Passive Turbulence Control
The effect of tandem spacing on the flow induced motions (FIM) of two circular cylinders with passive turbulence control is investigated using two-dimensional Unsteady Reynolds-Average Navier-Stokes equations with the Spalart-Allmaras turbulence model. Results are compared to experiments in the range of Reynolds number of 30,000<Re<100,000. The center-to-center spacing between the two cylinders is varied from 2 to 6 diameters. Simulation results predict well all ranges of FIM including VIV and galloping and match well with experimental measurements. For the upstream cylinder, the amplitude and frequency responses are not considerably influenced by the downstream cylinder when the spacing is greater than 2D. For the downstream cylinder, a rising amplitude trend in the VIV upper branch can be observed in all cases as is typical of flows in the TrSL3 regime. The galloping branch merges with the VIV upper branch for spacing greater than 3D. Vortex structures show significant variation in different flow regimes in accordance with experimental observations. High-resolution post-processing shows that the interaction between the wakes of cylinders result in various types of FIM.