Hydrodynamic Force Measurements on a Circular Cylinder Fitted With Peripheral Control Cylinders: Preliminary Results on the Development of VIV Suppressors

2015 ◽  
Author(s):  
Mariana Silva-Ortega ◽  
Gustavo R. S. Assi ◽  
Murilo M. Cicolin

Recent achievements in controlling the boundary layer by moving surfaces have been encouraging the development and investigation of passive suppressors of vortex-induced vibration. Within this context, the main purpose of the present work is to evaluate the suppression of vortex shedding of a plain cylinder surrounded by two, four and eight smaller control cylinders. Experiments have been carried out on a fixed circular cylinder to investigate the effect of the control cylinders over drag reduction. Control cylinders with diameter of d/D = 0.06 were tested, where D is the diameter of the main cylinder. The gap between the main cylinder and the control cylinders varied between G/D = 0.05 and 0.15. Experiments with a plain cylinder in the Reynolds number range from 5,000 to 50,000 have been performed to serve as reference. It was found that a cylinder fitted with four control cylinders presented less drag and fluctuating lift than cylinders fitted with two or eight small cylinders.

1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


1969 ◽  
Vol 37 (3) ◽  
pp. 577-585 ◽  
Author(s):  
P. W. Bearman

The flow around a circular cylinder has been examined over the Reynolds number range 105 to 7·5 × 105, Reynolds number being based on cylinder diameter. Narrow-band vortex shedding has been observed up to a Reynolds number of 5·5 × 105, i.e. well into the critical régime. At this Reynolds number the Strouhal number reached the unusually high value of 0·46. Spectra of the velocity fluctuations measured in the wake are presented for several values of Reynolds number.


2004 ◽  
Author(s):  
Yoshihisa Osano ◽  
Satoshi Ogata ◽  
Keizo Watanabe

To clarify the effects of surfactant solutions on the drag coefficient of a circular cylinder, the flow past a circular cylinder was investigated in the Reynolds number range of 10 to 7,000 by measuring the drag and by visualizing flow. In addition, the flow pattern was simulated numerically to examine the effect of the viscoelasticity of the surfactant solution. Six cylinders with diameters between 2 and 20 mm were tested, and the ratio of length to diameter (l/d) was 12~48. The test surfactant solutions were aqueous solutions of oleyl-methyldihydroxyethyl ammonium chloride (trade name: Ethoquad O/12) in the concentration range of 50 to 200 ppm and sodium salicylate was added as a counterion. It was clarified that the drag coefficient of surfactant solutions increases comparing with that of tap water in the Reynolds number range of 1,000 &lt; Re 3,000 and drag reduction occurs when Re &gt; 3,000 for a cylinder diameter of 20 mm. The maximum drag reduction ratio was approximately 55% for 200 ppm solution at Re = 7,000. The flow visualization results showed that the drag of surfactant solutions increases because of the existence of the wide stagnant zone around the cylinder. This zone disappeared in the Reynolds number range in which drag reduction occurred. In addition, the width of the wake of surfactant solutions decreases compared with that of tap water, and the Ka´rma´n vortex street is not found. These effects seem to be due to the elasticity caused by the micellar network in surfactant solution.


Author(s):  
Satoshi Ogata ◽  
Keizo Watanabe ◽  
Yoshihisa Osano

To clarify the behavior of the drag coefficient of a circular cylinder in the intermediate Reynolds number range, the flow around a circular cylinder in surfactant solutions was investigated experimentally by measurement of the drag in the Reynolds number range of 3 × 102 to 7 × 103. The experiments were performed in a vertical re-circulating water tunnel. The drag coefficient was measured using an apparatus which could measure the drag acting on the circular cylinder directly. Five cylinders of diameter d = 5, 7, 10, 13 and 20 mm were tested, the ratios of length to diameter (l/d) were 12, 24 and 48. The test surfactant solutions were aqueous solutions of Ethoquad O/12 at concentrations of 50, 100 and 200 ppm, and sodium salicylate was added as a counterion. It was clarified that the drag coefficient of the cylinder in surfactant solutions increased comparing that in tap water in the Reynolds number lower approximately 103 &lt; Re &lt; 3 × 103. According to the increase of the Reynolds number, the drag coefficient decreased. When Reynolds number exceeded approximately 103 &lt; Re &lt; 3 × 103, the drag coefficient in surfactant decreased in comparison with that in tap water finally. In other ward, the drag reduction occurred in this Reynolds number range. The maximum drag reduction was about 55% for 200 ppm solution and 20mm diameter at Re ≅ 7 × 103. The value of the drag coefficient in surfactant solutions was dependent on not only (l/d) but also cylinder diameter. The drag coefficient increased with increasing cylinder diameter. The increase in the concentration of surfactant solution emphasized the characteristics of drag reduction and drag increase.


1993 ◽  
Vol 59 (558) ◽  
pp. 342-348 ◽  
Author(s):  
Tsutomu Adachi ◽  
Hiroyuki Maeda ◽  
Masamitsu Shiono ◽  
Tetsuo Ozaki ◽  
Kazuo Matsuuchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document