On vortex shedding from a circular cylinder in the critical Reynolds number régime

1969 ◽  
Vol 37 (3) ◽  
pp. 577-585 ◽  
Author(s):  
P. W. Bearman

The flow around a circular cylinder has been examined over the Reynolds number range 105 to 7·5 × 105, Reynolds number being based on cylinder diameter. Narrow-band vortex shedding has been observed up to a Reynolds number of 5·5 × 105, i.e. well into the critical régime. At this Reynolds number the Strouhal number reached the unusually high value of 0·46. Spectra of the velocity fluctuations measured in the wake are presented for several values of Reynolds number.

1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


2015 ◽  
Author(s):  
Mariana Silva-Ortega ◽  
Gustavo R. S. Assi ◽  
Murilo M. Cicolin

Recent achievements in controlling the boundary layer by moving surfaces have been encouraging the development and investigation of passive suppressors of vortex-induced vibration. Within this context, the main purpose of the present work is to evaluate the suppression of vortex shedding of a plain cylinder surrounded by two, four and eight smaller control cylinders. Experiments have been carried out on a fixed circular cylinder to investigate the effect of the control cylinders over drag reduction. Control cylinders with diameter of d/D = 0.06 were tested, where D is the diameter of the main cylinder. The gap between the main cylinder and the control cylinders varied between G/D = 0.05 and 0.15. Experiments with a plain cylinder in the Reynolds number range from 5,000 to 50,000 have been performed to serve as reference. It was found that a cylinder fitted with four control cylinders presented less drag and fluctuating lift than cylinders fitted with two or eight small cylinders.


1987 ◽  
Vol 178 ◽  
pp. 303-323 ◽  
Author(s):  
Takeo Nakagawa

This paper is primarily concerned with Mach-number effects on the vortex shedding behind a square cylinder (side length D = 20 mm) in a Reynolds-number range of 0.696 × 105 < Re < 4.137 × 105, and a Mach-number range of 0.1522 < M < 0.9049.Regular periodic vortex shedding is present, irrespective of the appearance of shock waves around a square cylinder. The shape of the vortices is, however, deformed by the shock waves, and each vortex centre becomes non-uniform while the vortex passes through the gap between the upper and lower shock waves. Weak shock waves around the square cylinder do not alter the Strouhal number, but strong shock waves weaken the vortex shedding and increase the Strouhal number suddenly. Acoustic waves have been recorded by the Mach-Zehnder interferometer when the Mach number is close to the critical value. The acoustic waves are generated most strongly at the instant when each vortex hits the foot of the shock waves formed above and below the vortex formation region.From the present work and that of Okajima (1982), it is suggested that the Strouhal number of alternating vortices shed from a square cylinder can be estimated to be about 0.13 in the Reynolds-number range between 102 and 3.4 × 105.


Sign in / Sign up

Export Citation Format

Share Document