Identification and Optimization of Most Relevant Variables When Creating a Maintenance Strategy of an Offshore Wind Farm

Author(s):  
Ana Beatriz Gomes Zanforlin ◽  
Adriana Miralles Schleder ◽  
Marcelo Ramos Martins

A lot has been researched recently in order to enable economically feasible use of offshore wind energy. Although these figures have been falling, offshore wind energy generation has in average still much higher costs associated with the inherent drawbacks of installing and operating assets at the sea’s hostile environment. As much of these costs are related to unplanned maintenance tasks, one promising approach to make wind energy more competitive is to optimize the resources involved in it. This paper was developed with the purpose of analyzing the viability of an algorithm that offers valuable information when defining a maintenance strategy for the operation of an offshore wind farm, aiming at the availability and the expected profit optimization, with a different approach than usual. Initially, an algorithm to conduct a reliability, availability and maintainability (RAM) analysis was created based on a Monte Carlo Simulation (MCS). Given a simplified wind farm model, as well as its components’ failure data and configuration, it is possible to obtain its availability and energy production costs. The algorithm was validated by comparing known failure data with the stochastically obtained after running the algorithm. A case study was defined based on extensive literature research and the simulation was executed considering restrictions typically found in modern wind farms. A sensitivity analysis was conducted in order to understand how each model’s parameter affects the energy production costs. Given this analysis, it was possible to determine the most relevant optimization variables when creating a maintenance strategy. Following, an algorithm for optimizing those parameters is presented.

2008 ◽  
Vol 42 (2) ◽  
pp. 19-27 ◽  
Author(s):  
Christopher N. Elkinton ◽  
James F. Manwell ◽  
Jon G. McGowan

Offshore wind energy technology is a reality in Europe and is poised to make a significant contribution to the U.S. energy supply in the near future as well. The layout of an offshore wind farm is a complex problem involving many trade-offs. For example, energy production increases with turbine spacing, as do electrical costs and losses. Energy production also increases with distance from shore, but so do O&M (operations and maintenance), foundation, transmission, and installation costs. Determining which of these factors dominates requires a thorough understanding of the physics behind these trade-offs, can lead to the optimal layout, and helps lower the cost of energy from these farms. This paper presents the results of a study carried out to investigate these trade-offs and to develop a method for optimizing the wind farm layout during the micrositing phase of an offshore wind energy system design. It presents a method for analyzing the cost of energy from offshore wind farms as well as a summary of the development of an offshore wind farm layout optimization tool. In addition to an initial validation of the optimization tool, an example of the use of this tool for the design of an offshore wind farm in Hull, Massachusetts, is also given.


2017 ◽  
Vol 11 (4) ◽  
pp. 664-680 ◽  
Author(s):  
Tove Brink

Purpose This paper aims to reveal how larger enterprises and small and medium-sized enterprises (SMEs) can enable innovation collaboration for enhanced competitiveness of the offshore wind energy sector. Design/methodology/approach The research is based on a longitudinal qualitative study starting in 2011 with a project-based network learning course with 15 SME wind farm suppliers and follow-up interviews with 10 SMEs and continued with interviews conducted with 20 individual enterprises within operation and maintenance conducted in 2014-2015. Findings The findings reveal challenges as well as opportunities for innovation collaboration between larger enterprises and SMEs to contribute to the innovation and competitiveness of the offshore wind farm sector. A glass ceiling is revealed for demand-driven positions if the SME does not possess rare and specific valuable knowledge. There are opportunities revealed in general for supplier-driven positions if SME suppliers can collaborate and develop interesting solutions for larger enterprises. If SMEs succeed in either of these aims, the SMEs have an opportunity to attain partner-driven collaboration. However, challenges are present according to the understanding of the different organisational approaches in SMEs and larger enterprises and in the different business approaches. Research limitations/implications The research is limited to the offshore wind energy sector. Further research is needed for verification of the findings in other energy sectors. Originality/value A fourfold contribution is made to enhance the understanding of innovation collaboration and to enable competitiveness for the offshore wind energy sector. SMEs, larger enterprises, academic researchers and policy bodies are provided with a model for action within the four positions for innovation collaboration.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1499 ◽  
Author(s):  
Esther Dornhelm ◽  
Helene Seyr ◽  
Michael Muskulus

To maintain the increasing interest and development in offshore wind energy, novel training tools for engineers and researchers are needed. Concurrently, educational outreach activities are in demand to inform the public about the importance of offshore wind energy. In this paper, the development of a serious game about the design and management of offshore wind farms is presented to address such demands. Such a serious game may enable a new audience to explore the field of offshore wind as well as provide researchers entering the field a better understanding of the intricacies of the industry. This requires a simulation that is realistic but also effective in teaching information and engaging outreach. Ultimately, increased public support and expanded training tools are desired to improve decision-making and to provide opportunities to test and integrate innovative solutions. The work presented here includes the game design and implementation of a prototype game. The game design involves building a game framework and developing a simplified simulation. This simulation addresses weather prediction, offshore wind farm design, operation and maintenance, energy demand, climate change, and finance. Playtesting of the prototype demonstrated immersion and informed decision-making of the players and surveys revealed that knowledge had increased while playing the game. Recommendations for future versions of the game are listed.


2018 ◽  
Vol 38 (1) ◽  
pp. 27-34
Author(s):  
Leszek Dawid

AbstractAt the end of 2016 there were 84 wind farms under construction in 11 European countries. Investments in this sector are enormous. The average cost of a wind farm construction amounts to approx. 4 mln EUR per 1 MW of installed power. Offshore wind energy production also plays a significant role in the process of ensuring energy security in Europe, and in reduction of greenhouse gases. The objective of this paper is to present prospects of offshore wind energy farms development in the leading member states of the European Union as regards this problem. In this paper offshore wind farms in Germany and Denmark have been studied. In the paper the power of wind farms, the support systems as well as criteria related to location of wind farm offshore have been analysed. German and Danish sectors of offshore wind energy are strongly supported by respective governments. Both countries aim at yearly increase of wind energy share in total energy production. The research has been conducted based on the analysis of acts, regulations, the subject’s literature and information from websites.


2020 ◽  
Vol 15 (6) ◽  
pp. 111-124
Author(s):  
FARAH ELLYZA HASHIM ◽  
◽  
OSCAR PEYRE ◽  
SARAH JOHNSON LAPOK ◽  
OMAR YAAKOB ◽  
...  

Realistic view on the potential of offshore wind farm development in Malaysia is necessary and requires accurate and wide coverage of wind speed data. Long term global datasets of satellite altimetry of wind speed provide a potentially valuable resource to identify the potential of offshore wind energy in Malaysia. This paper presents three different assessments of offshore wind energy resources in Malaysia using satellite altimetry. The wind speed data obtained from Radar Altimeter Database System (RADS) were validated and identified to be in agreement with previous studies. The resources were then assessed at three different levels; theoretical, technical and practical offshore wind energy potential. The technical resource potential was assessed by taking into consideration the available offshore wind turbine technology. Conflicting uses and environmental constraints that define the practical offshore wind energy resources are plotted on the maps to present a practicality of offshore wind farm development in Malaysian sea. The study concluded that, in theoretical view, Malaysia does have potential of offshore wind energy resource especially in Borneo Water with average annual wind energy density above 500 kWh/m2. However, the development of offshore wind farm in Malaysia will be difficult taking into consideration the technical and practical challenge.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naveed Akhtar ◽  
Beate Geyer ◽  
Burkhardt Rockel ◽  
Philipp S. Sommer ◽  
Corinna Schrum

AbstractThe European Union has set ambitious CO2 reduction targets, stimulating renewable energy production and accelerating deployment of offshore wind energy in northern European waters, mainly the North Sea. With increasing size and clustering, offshore wind farms (OWFs) wake effects, which alter wind conditions and decrease the power generation efficiency of wind farms downwind become more important. We use a high-resolution regional climate model with implemented wind farm parameterizations to explore offshore wind energy production limits in the North Sea. We simulate near future wind farm scenarios considering existing and planned OWFs in the North Sea and assess power generation losses and wind variations due to wind farm wake. The annual mean wind speed deficit within a wind farm can reach 2–2.5 ms−1 depending on the wind farm geometry. The mean deficit, which decreases with distance, can extend 35–40 km downwind during prevailing southwesterly winds. Wind speed deficits are highest during spring (mainly March–April) and lowest during November–December. The large-size of wind farms and their proximity affect not only the performance of its downwind turbines but also that of neighboring downwind farms, reducing the capacity factor by 20% or more, which increases energy production costs and economic losses. We conclude that wind energy can be a limited resource in the North Sea. The limits and potentials for optimization need to be considered in climate mitigation strategies and cross-national optimization of offshore energy production plans are inevitable.


2020 ◽  
Vol 31 (4) ◽  
pp. 26-42
Author(s):  
Gordon Rae ◽  
Gareth Erfort

In the context of the Anthropocene, the decoupling of carbon emissions from electricity generation is critical. South Africa has an ageing coal power fleet, which will gradually be decommissioned over the next 30 years. This creates substantial opportunity for a just transition towards a future energy mix with a high renewable energy penetration. Offshore wind technology is a clean electricity generation alternative that presents great power security and decarbonisation opportunity for South Africa. This study estimated the offshore wind energy resource available within South Africa’s exclusive economic zone (EEZ), using a geographic information system methodology. The available resource was estimated under four developmental scenarios. This study revealed that South Africa has an annual offshore wind energy production potential of 44.52 TWh at ocean depths of less than 50 m (Scenario 1) and 2 387.08 TWh at depths less than 1 000 m (Scenario 2). Furthermore, a GIS-based multi-criteria evaluation was conducted to determine the most suitable locations for offshore wind farm development within the South African EEZ. The following suitable offshore wind development regions were identified: Richards Bay, KwaDukuza, Durban, and Struis Bay. Based on South Africa’s annual electricity consumption of 297.8 TWh in 2018, OWE could theoretically supply approximately 15% and 800% of South Africa’s annual electricity demand with offshore wind development Scenario 1 and 2 respectively.


2017 ◽  
Vol 41 (3) ◽  
pp. 160-173 ◽  
Author(s):  
Suzan Abdelhady ◽  
Domenico Borello ◽  
Ahmed Shaban

Offshore wind turbines are being used to harness the high value of wind energy usually available on the sea sufficiently far from the shore (i.e. some kilometers). The present study provides an assessment of the potential of offshore wind energy along the Mediterranean Sea in Egypt. The techno-economic assessment was conducted considering a 7.0 MW offshore wind turbine at seven sites along the Mediterranean Sea. Fixed platforms were considered, assuming that the maximum sea depth will be 60 m, that is representative of the sea depth in the Mediterranean coast of Egypt at 5 km from the shore. The analysis reveals that a very large amount of energy can be harvested. The minimum energy production is obtained at Alexandria with a capacity factor of 55%, and the maximum energy production is obtained at El Dabaa station with a capacity factor of 63%. The levelized cost of electricity (LCOE) is estimated as to be equal to about 0.075–0.079 US$/kWh which can be considered very competitive with other renewable energy systems in Egypt. The results prove the techno-economic feasibility of the offshore wind energy resource in Egypt, and it would motivate both the research community and the policy makers for more attention regarding this resource.


Sign in / Sign up

Export Citation Format

Share Document