Optimizing the Layout of Offshore Wind Energy Systems

2008 ◽  
Vol 42 (2) ◽  
pp. 19-27 ◽  
Author(s):  
Christopher N. Elkinton ◽  
James F. Manwell ◽  
Jon G. McGowan

Offshore wind energy technology is a reality in Europe and is poised to make a significant contribution to the U.S. energy supply in the near future as well. The layout of an offshore wind farm is a complex problem involving many trade-offs. For example, energy production increases with turbine spacing, as do electrical costs and losses. Energy production also increases with distance from shore, but so do O&M (operations and maintenance), foundation, transmission, and installation costs. Determining which of these factors dominates requires a thorough understanding of the physics behind these trade-offs, can lead to the optimal layout, and helps lower the cost of energy from these farms. This paper presents the results of a study carried out to investigate these trade-offs and to develop a method for optimizing the wind farm layout during the micrositing phase of an offshore wind energy system design. It presents a method for analyzing the cost of energy from offshore wind farms as well as a summary of the development of an offshore wind farm layout optimization tool. In addition to an initial validation of the optimization tool, an example of the use of this tool for the design of an offshore wind farm in Hull, Massachusetts, is also given.

Author(s):  
Ana Beatriz Gomes Zanforlin ◽  
Adriana Miralles Schleder ◽  
Marcelo Ramos Martins

A lot has been researched recently in order to enable economically feasible use of offshore wind energy. Although these figures have been falling, offshore wind energy generation has in average still much higher costs associated with the inherent drawbacks of installing and operating assets at the sea’s hostile environment. As much of these costs are related to unplanned maintenance tasks, one promising approach to make wind energy more competitive is to optimize the resources involved in it. This paper was developed with the purpose of analyzing the viability of an algorithm that offers valuable information when defining a maintenance strategy for the operation of an offshore wind farm, aiming at the availability and the expected profit optimization, with a different approach than usual. Initially, an algorithm to conduct a reliability, availability and maintainability (RAM) analysis was created based on a Monte Carlo Simulation (MCS). Given a simplified wind farm model, as well as its components’ failure data and configuration, it is possible to obtain its availability and energy production costs. The algorithm was validated by comparing known failure data with the stochastically obtained after running the algorithm. A case study was defined based on extensive literature research and the simulation was executed considering restrictions typically found in modern wind farms. A sensitivity analysis was conducted in order to understand how each model’s parameter affects the energy production costs. Given this analysis, it was possible to determine the most relevant optimization variables when creating a maintenance strategy. Following, an algorithm for optimizing those parameters is presented.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2465 ◽  
Author(s):  
Mamdouh Abdulrahman ◽  
David Wood

The problem of optimally increasing the size of existing wind farms has not been investigated in the literature. In this paper, a proposed wind farm layout upgrade by adding different (in type and/or hub height) commercial turbines to an existing farm is introduced and optimized. Three proposed upgraded layouts are considered: internal grid, external grid, and external unstructured. The manufacturer’s power curve and a general representation for thrust coefficient are used in power and wake calculations, respectively. A simple field-based model is implemented and both offshore and onshore conditions are considered. A genetic algorithm is used for the optimization. The trade-off range between energy production and cost of energy is investigated by considering three objective functions, individually: (1) annual energy production; (2) cost of added energy; and (3) cost of total energy. The proposed upgraded layouts are determined for the Horns Rev 1 offshore wind farm. The results showed a wide range of suitable upgrade scenarios depending on the upgraded layout and the optimization objective. The farm energy production is increased by 190–336% with a corresponding increase in the total cost by 147–720%. The external upgrade offers more energy production but with much more cost. The unstructured layouts showed clear superiority over the grid ones by providing much lower cost of energy.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2728 ◽  
Author(s):  
Longfu Luo ◽  
Xiaofeng Zhang ◽  
Dongran Song ◽  
Weiyi Tang ◽  
Jian Yang ◽  
...  

As onshore wind energy has depleted, the utilization of offshore wind energy has gradually played an important role in globally meeting growing green energy demands. However, the cost of energy (COE) for offshore wind energy is very high compared to the onshore one. To minimize the COE, implementing optimal design of offshore turbines is an effective way, but the relevant studies are lacking. This study proposes a method to minimize the COE of offshore wind turbines, in which two design parameters, including the rated wind speed and rotor radius are optimally designed. Through this study, the relation among the COE and the two design parameters is explored. To this end, based on the power-coefficient power curve model, the annual energy production (AEP) model is designed as a function of the rated wind speed and the Weibull distribution parameters. On the other hand, the detailed cost model of offshore turbines developed by the National Renewable Energy Laboratory is formulated as a function of the rated wind speed and the rotor radius. Then, the COE is formulated as the ratio of the total cost and the AEP. Following that, an iterative method is proposed to search the minimal COE which corresponds to the optimal rated wind speed and rotor radius. Finally, the proposed method has been applied to the wind classes of USA, and some useful findings have been obtained.


2017 ◽  
Vol 11 (4) ◽  
pp. 664-680 ◽  
Author(s):  
Tove Brink

Purpose This paper aims to reveal how larger enterprises and small and medium-sized enterprises (SMEs) can enable innovation collaboration for enhanced competitiveness of the offshore wind energy sector. Design/methodology/approach The research is based on a longitudinal qualitative study starting in 2011 with a project-based network learning course with 15 SME wind farm suppliers and follow-up interviews with 10 SMEs and continued with interviews conducted with 20 individual enterprises within operation and maintenance conducted in 2014-2015. Findings The findings reveal challenges as well as opportunities for innovation collaboration between larger enterprises and SMEs to contribute to the innovation and competitiveness of the offshore wind farm sector. A glass ceiling is revealed for demand-driven positions if the SME does not possess rare and specific valuable knowledge. There are opportunities revealed in general for supplier-driven positions if SME suppliers can collaborate and develop interesting solutions for larger enterprises. If SMEs succeed in either of these aims, the SMEs have an opportunity to attain partner-driven collaboration. However, challenges are present according to the understanding of the different organisational approaches in SMEs and larger enterprises and in the different business approaches. Research limitations/implications The research is limited to the offshore wind energy sector. Further research is needed for verification of the findings in other energy sectors. Originality/value A fourfold contribution is made to enhance the understanding of innovation collaboration and to enable competitiveness for the offshore wind energy sector. SMEs, larger enterprises, academic researchers and policy bodies are provided with a model for action within the four positions for innovation collaboration.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1499 ◽  
Author(s):  
Esther Dornhelm ◽  
Helene Seyr ◽  
Michael Muskulus

To maintain the increasing interest and development in offshore wind energy, novel training tools for engineers and researchers are needed. Concurrently, educational outreach activities are in demand to inform the public about the importance of offshore wind energy. In this paper, the development of a serious game about the design and management of offshore wind farms is presented to address such demands. Such a serious game may enable a new audience to explore the field of offshore wind as well as provide researchers entering the field a better understanding of the intricacies of the industry. This requires a simulation that is realistic but also effective in teaching information and engaging outreach. Ultimately, increased public support and expanded training tools are desired to improve decision-making and to provide opportunities to test and integrate innovative solutions. The work presented here includes the game design and implementation of a prototype game. The game design involves building a game framework and developing a simplified simulation. This simulation addresses weather prediction, offshore wind farm design, operation and maintenance, energy demand, climate change, and finance. Playtesting of the prototype demonstrated immersion and informed decision-making of the players and surveys revealed that knowledge had increased while playing the game. Recommendations for future versions of the game are listed.


Author(s):  
Ajit C. Pillai ◽  
John Chick ◽  
Lars Johanning ◽  
Mahdi Khorasanchi ◽  
Sami Barbouchi

This article explores the application of a binary genetic algorithm and a binary particle swarm optimizer to the optimization of an offshore wind farm layout. The framework developed as part of this work makes use of a modular design to include a detailed assessment of a wind farm’s layout including validated analytic wake modeling, cost assessment, and the design of the necessary electrical infrastructure considering constraints. This study has found that both algorithms are capable of optimizing wind farm layouts with respect to levelized cost of energy when using a detailed, complex evaluation function. Both are also capable of identifying layouts with lower levelized costs of energy than similar studies that have been published in the past and are therefore both applicable to this problem. The performance of both algorithms has highlighted that both should be further tuned and benchmarked in order to better characterize their performance.


2018 ◽  
Vol 38 (1) ◽  
pp. 27-34
Author(s):  
Leszek Dawid

AbstractAt the end of 2016 there were 84 wind farms under construction in 11 European countries. Investments in this sector are enormous. The average cost of a wind farm construction amounts to approx. 4 mln EUR per 1 MW of installed power. Offshore wind energy production also plays a significant role in the process of ensuring energy security in Europe, and in reduction of greenhouse gases. The objective of this paper is to present prospects of offshore wind energy farms development in the leading member states of the European Union as regards this problem. In this paper offshore wind farms in Germany and Denmark have been studied. In the paper the power of wind farms, the support systems as well as criteria related to location of wind farm offshore have been analysed. German and Danish sectors of offshore wind energy are strongly supported by respective governments. Both countries aim at yearly increase of wind energy share in total energy production. The research has been conducted based on the analysis of acts, regulations, the subject’s literature and information from websites.


2020 ◽  
Vol 15 (6) ◽  
pp. 111-124
Author(s):  
FARAH ELLYZA HASHIM ◽  
◽  
OSCAR PEYRE ◽  
SARAH JOHNSON LAPOK ◽  
OMAR YAAKOB ◽  
...  

Realistic view on the potential of offshore wind farm development in Malaysia is necessary and requires accurate and wide coverage of wind speed data. Long term global datasets of satellite altimetry of wind speed provide a potentially valuable resource to identify the potential of offshore wind energy in Malaysia. This paper presents three different assessments of offshore wind energy resources in Malaysia using satellite altimetry. The wind speed data obtained from Radar Altimeter Database System (RADS) were validated and identified to be in agreement with previous studies. The resources were then assessed at three different levels; theoretical, technical and practical offshore wind energy potential. The technical resource potential was assessed by taking into consideration the available offshore wind turbine technology. Conflicting uses and environmental constraints that define the practical offshore wind energy resources are plotted on the maps to present a practicality of offshore wind farm development in Malaysian sea. The study concluded that, in theoretical view, Malaysia does have potential of offshore wind energy resource especially in Borneo Water with average annual wind energy density above 500 kWh/m2. However, the development of offshore wind farm in Malaysia will be difficult taking into consideration the technical and practical challenge.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naveed Akhtar ◽  
Beate Geyer ◽  
Burkhardt Rockel ◽  
Philipp S. Sommer ◽  
Corinna Schrum

AbstractThe European Union has set ambitious CO2 reduction targets, stimulating renewable energy production and accelerating deployment of offshore wind energy in northern European waters, mainly the North Sea. With increasing size and clustering, offshore wind farms (OWFs) wake effects, which alter wind conditions and decrease the power generation efficiency of wind farms downwind become more important. We use a high-resolution regional climate model with implemented wind farm parameterizations to explore offshore wind energy production limits in the North Sea. We simulate near future wind farm scenarios considering existing and planned OWFs in the North Sea and assess power generation losses and wind variations due to wind farm wake. The annual mean wind speed deficit within a wind farm can reach 2–2.5 ms−1 depending on the wind farm geometry. The mean deficit, which decreases with distance, can extend 35–40 km downwind during prevailing southwesterly winds. Wind speed deficits are highest during spring (mainly March–April) and lowest during November–December. The large-size of wind farms and their proximity affect not only the performance of its downwind turbines but also that of neighboring downwind farms, reducing the capacity factor by 20% or more, which increases energy production costs and economic losses. We conclude that wind energy can be a limited resource in the North Sea. The limits and potentials for optimization need to be considered in climate mitigation strategies and cross-national optimization of offshore energy production plans are inevitable.


Sign in / Sign up

Export Citation Format

Share Document