“Three Sisters” Measured As a Triple Rogue Wave Group

Author(s):  
Anne Karin Magnusson ◽  
Karsten Trulsen ◽  
Ole Johan Aarnes ◽  
Elzbieta M. Bitner-Gregersen ◽  
Mika P. Malila

Abstract On November 30, 2018, our attention was caught when analyzing wave profile time series measured by a platform mounted wave sensor (a SAAB REX radar) at Ekofisk, central North Sea. The 20-minute time series had not only one, but three consecutive waves with individual heights that all were more than twice the significant wave height, the two last of them being almost equally high with a factor 2.35 to the significant wave height of 4m (from 4σ(η), over 20 minutes). Counting three rogue waves in one sequence seems to be very rare. In this study we analyze how the shape is evolving in space and time using linear and non-linear propagation methods developed by Mark Donelan [1,2] and Karsten Trulsen [3,4]. Weather conditions and characteristics of the sea state with the ‘Three Sisters’ (named the “Justine Three Sisters”) are presented. It is found that the Three Sisters occurred in a crossing sea condition, with wind sea and swell coming from directions 60 degrees apart, with about same frequency, but very different energy.

2004 ◽  
Vol 126 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Felice Arena ◽  
Silvia Puca

A Multivariate Neural Network (MNN) algorithm is proposed for the reconstruction of significant wave height time series, without any increase of the error of the MNN output with the number of modelled data. The algorithm uses a weighted error function during the learning phase, to improve the modelling of the higher significant wave height. The ability of the MNN to reconstruct sea storms is tested by applying the equivalent triangular storm model. Finally an application to the NOAA buoys moored off California shows a good performance of the MNN algorithm, both during sea storms and calm time periods.


2006 ◽  
Vol 19 (21) ◽  
pp. 5667-5685 ◽  
Author(s):  
Sergey K. Gulev ◽  
Vika Grigorieva

Abstract This paper analyses secular changes and interannual variability in the wind wave, swell, and significant wave height (SWH) characteristics over the North Atlantic and North Pacific on the basis of wind wave climatology derived from the visual wave observations of voluntary observing ship (VOS) officers. These data are available from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) collection of surface meteorological observations for 1958–2002, but require much more complicated preprocessing than standard meteorological variables such as sea level pressure, temperature, and wind. Visual VOS data allow for separate analysis of changes in wind sea and swell, as well as in significant wave height, which has been derived from wind sea and swell estimates. In both North Atlantic and North Pacific midlatitudes winter significant wave height shows a secular increase from 10 to 40 cm decade−1 during the last 45 yr. However, in the North Atlantic the patterns of trend changes for wind sea and swell are quite different from each other, showing opposite signs of changes in the northeast Atlantic. Trend patterns of wind sea, swell, and SWH in the North Pacific are more consistent with each other. Qualitatively the same conclusions hold for the analysis of interannual variability whose leading modes demonstrate noticeable differences for wind sea and swell. Statistical analysis shows that variability in wind sea is closely associated with the local wind speed, while swell changes can be driven by the variations in the cyclone counts, implying the importance of forcing frequency for the resulting changes in significant wave height. This mechanism of differences in variability patterns of wind sea and swell is likely more realistic than the northeastward propagation of swells from the regions from which the wind sea signal originates.


2020 ◽  
Vol 2 (1) ◽  
pp. 3
Author(s):  
Tommaso Caloiero ◽  
Francesco Aristodemo ◽  
Danilo Algieri Ferraro

An analysis of a 40-year long wave time series was performed, along the coasts of Italy, in order to identify ongoing trends of two synthetic parameters, significant wave height (Hs) and energy period (Te), and of the wave power (P). First, wave data were deduced from the global atmospheric reanalysis ERA-INTERIM by the ECMWF and checked to verify their consistency. Then, a trend analysis was performed on mean values evaluated at annual and seasonal scales through the non-parametric Mann–Kendall test for three different significance levels equal to 90%, 95% and 99%. The obtained results could be useful for analyses linked to beach morphodynamics and on the identification of field installations of Wave Energy Converters (WECs).


2011 ◽  
Vol 11 (11) ◽  
pp. 2913-2924 ◽  
Author(s):  
I. Nikolkina ◽  
I. Didenkulova

Abstract. The evidence of rogue wave existence all over the world during last five years (2006–2010) has been collected based mainly on mass media sources. Only events associated with damage and human loss are included. The waves occurred not only in deep and shallow zones of the World Ocean, but also at the coast, where they were manifested as either sudden flooding of the coast or high splashes over steep banks or sea walls. From the total number of 131 reported events, 78 were identified as evidence of rogue waves (which are expected to be at least twice larger than the significant wave height). The background significant wave height was estimated from the satellite wave data. The rogue waves at the coast, where the significant wave height is unknown or meaningless, were selected based on their unexpectedness and hazardous character. The statistics built on the selected 78 events suggests that extreme waves cause more damage in shallow waters and at the coast than in the deep sea and can be used for hazard assessment of the rogue wave phenomenon.


Sign in / Sign up

Export Citation Format

Share Document