A Modified Dugoff Tire Model for Combined-slip Forces

2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.

2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


Author(s):  
S. C¸ag˘lar Bas¸lamıs¸lı ◽  
Selim Solmaz

In this paper, a control oriented rational tire model is developed and incorporated in a two-track vehicle dynamics model for the prospective design of vehicle dynamics controllers. The tire model proposed in this paper is an enhancement over previous rational models which have taken into account only the peaking and saturation behavior disregarding all other force generation characteristics. Simulation results have been conducted to compare the dynamics of a vehicle model equipped with a Magic Formula tire model, a rational tire model available in the literature and the present rational tire model. It has been observed that the proposed tire model results in vehicle responses that closely follow those obtained with the Magic Formula even for extreme driving scenarios conducted on roads with low adhesion coefficient.


2005 ◽  
Vol 33 (4) ◽  
pp. 227-238 ◽  
Author(s):  
D. Bozdog ◽  
W. W. Olson

Abstract The objective of this paper is to investigate a class of general tire models that provides results suitable for usage in vehicle dynamics. Tire models currently used for vehicle dynamic analyses are overly simplistic (springs, a spring and damper combination or semi-elastic substance) or based on curve fits of experimental data. In contrast, the tire models used by major tire companies are extremely complex with solutions possible only by finite element analysis. Between these two extremes exists the potential for an elasticity based shell theory tire model. Micro-mechanics and composite laminate theories provide an integrated approach to the macroscopic behavior of the tire carcass and the tread support plies. This methodology has the capability of including centrifugal and friction forces. Finite difference methods are applied that produce reliable and accurate solutions of the tire response.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Guangzong Gao ◽  
Jixin Wang ◽  
Tao Ma ◽  
Wenzhong Liu ◽  
Tianlong Lei

The distributed drive articulated steering vehicle (DDASV) has a broad application prospect in the field of special operations. It is essential to obtain accurate vehicle states for better effect of active control. DDASV dynamic model is presented. To improve robustness, an adaptive strong tracking algorithm is applied to the singular value decomposition unscented Kalman filter (SVDUKF). Divided by yaw rate sensors and the tire models, two multistage estimators are established for DDASVs. Stable steering condition is simulated to investigate the influence on the estimated accuracy about the sensors and tire models. The velocities and tire forces are the key parameters to be estimated. The performance of each estimator regarding the practicability and accuracy is compared. The results show that all estimators are practicable. However, the accuracy of the estimated velocities based on yaw rate sensors is better and the transient tire model can improve the accuracy of estimated lateral forces more effectively for the estimator established with yaw rate sensors.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jianfeng Wang ◽  
Yiqun Liu ◽  
Liang Ding ◽  
Jun Li ◽  
Haibo Gao ◽  
...  

In order to meet the demands of small race car dynamics simulation, a new method of parameter identification in the Magic Formula tire model is presented in this work, based on an analysis of the Magic Formula tire model structure. A high-precision tire model used for vehicle dynamics simulation is established via this method. It is difficult for students to build a high-precision tire model because of the complexity of widely used tire models such as Magic Formula and UniTire. At a pure side slip condition, building a lateral force model is an example, which illustrate the utilization of a multilayer feed-forward neural network to build an intelligent tire model conveniently. In order to fully understand the difference between the two models, a two-degrees-of-freedom (2 DOF) vehicle model is established. The advantages, disadvantages, and applicable scope of the two tire models are discussed after comparing the simulation results of the 2 DOF model with the Magic Formula and intelligent tire model.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Nan Xu ◽  
Konghui Guo ◽  
Xinjie Zhang ◽  
Hamid Reza Karimi

The tire mechanical characteristics under combined cornering and braking/driving situations have significant effects on vehicle directional controls. The objective of this paper is to present an analytical tire model with flexible carcass for combined slip situations, which can describe tire behavior well and can also be used for studying vehicle dynamics. The tire forces and moments come mainly from the shear stress and sliding friction at the tread-road interface. In order to describe complicated tire characteristics and tire-road friction, some key factors are considered in this model: arbitrary pressure distribution; translational, bending, and twisting compliance of the carcass; dynamic friction coefficient; anisotropic stiffness properties. The analytical tire model can describe tire forces and moments accurately under combined slip conditions. Some important properties induced by flexible carcass can also be reflected. The structural parameters of a tire can be identified from tire measurements and the computational results using the analytical model show good agreement with test data.


2003 ◽  
Vol 31 (1) ◽  
pp. 19-38 ◽  
Author(s):  
M. Sobhanie

Abstract Severe loading in a tire/suspension system arises when a rolling tire impacts an obstacle, such as a curb or pothole. Forces and moments at suspension hard points are needed during an impact for component specification, component durability, and endurance analysis. Today, automotive manufacturers and suppliers are promoting virtual prototyping by use of a computer-aided engineering (CAE) tool. CAE consists of a tire model, a suspension model, and a solver for equilibrium equations. The tire models can be classified either by a parametric tire model (PTM) or by a finite element tire model. In the former tire model, tire stiffness is represented by a set of springs; tire forces and moments are estimated by Pajeka equations. This class of tire models is limited to modeling a vehicle's performance, such as ride and handling. In recent years, explicit dynamic modeling of a rolling tire impacting a road imperfection has been used to calculate forces transmitted to a suspension system. The tire model consisted of a single layer of shell elements; solid elements were considered for the tread cap. The beads were not considered in this tire model. In this analysis, ABAQUS Explicit was used to model the rolling and transient impact of a tire. ABAQUS Explicit's modeling results were compared to ABAQUS Standard's results. The comparison included the tire forces, footprint pressure distribution at a free rolling condition, and resonant frequencies. In addition, modeling results of a tire/suspension system traversing an obstacle were presented. The suspension components, except spring and shock, were modeled by rigid elements connected together.


Sign in / Sign up

Export Citation Format

Share Document