Finite Element Analysis of Structure Strength on Engine Room of a Submerged Waterjet Propelled Ship

Author(s):  
Hanqi Wang ◽  
Jiangming Ding

Abstract The submerged waterjet offers further benefits with respect to excellent stealth performance, low inflow energy loss, high propulsive efficiency at low and medium speeds, and excellent underwater acoustic performance. It also offers potential for space savings as a result of the high integration with the hull bottom. A parameterized stern line layout method for DTMB 5415 is proposed to design a new ship type fitted with submerged waterjet propeller. Based on the finite element method, the strength analysis and modal analysis of the new hull-form are carried out. The transom equipped with submerged waterjets is constructed by three main parameters which includes tunnel lengths, tunnel transverse positions and shaft angles. CFD calculation of hull flow field and resistance was carried out based on the designed new ship type to evaluate hydrodynamic load. Based on the finite element method, MSC.Patran/Nastran and Abaqus CAE was used to analysis the stress and deformation of the engine room under the static load, and the modal analysis of the engine room was carried out to calculate the vibration frequency and mode of the engine room. Numerical results show that the stress and deformation of the section are agree with the design and the section will not be broken. The different order total modal deformation and natural frequency are given, which lays a foundation for the research of vibration noise prediction and noise reduction technology of ship engine room.

2021 ◽  
Vol 11 (3) ◽  
pp. 1310
Author(s):  
Merve Yavuz Erkek ◽  
Selim Erkek ◽  
Elmira Jamei ◽  
Mehdi Seyedmahmoudian ◽  
Alex Stojcevski ◽  
...  

Modal analysis provides the dynamic behavior of an object or structure, and is often undertaken using the Finite Element Method (FEM) due to its ability to deal with arbitrary geometries. This article investigates the use of Augmented Reality (AR) to provide the in situ visualization of a modal analysis for an aluminum impeller. Finite Element Analysis (FEA) software packages regularly use heat maps and shape deformation to visualize the outcomes of a given simulation. AR allows the superimposition of digital information on a view of the real-world environment, and provides the opportunity to overlay such simulation results onto real-world objects and environments. The presented modal analysis undertaken herein provides natural frequencies and the corresponding deformation of an aluminum impeller. The results indicate the ability for the design part and finite element analysis results to be viewed on the physical part. A mobile AR-FEA-based system was developed for Modal Analysis result visualization. This study offers designers and engineers a new way to visualize such simulation results.


2020 ◽  
Vol 313 ◽  
pp. 00034
Author(s):  
Pavol Lengvarský ◽  
Martin Mantič ◽  
Róbert Huňady

The special type of C-hook is investigated in this paper. The C-hook is designed to carry a special load, where is not possible to use classical hooks or chain slings. The designed hook is consisted of two arms that ensure the stability of the load being carried. The finite element analysis is performed for the control of the stress and deformation state in the whole hook. The fatigue analysis is performed for the check of a lifetime of C-hook.


2014 ◽  
Vol 1061-1062 ◽  
pp. 584-587
Author(s):  
Xiao Liang Chen ◽  
Zuan Tian ◽  
Yuan Ping Li

With the development of the society, sheet metal filing cabinets have become popular in the office. When filing cabinets store too many paper documents, the interlayer splints often fail because of the failure of the small brackets below. The stress and deformation of brackets were studied by the theoretical method and the finite element method. Results show some small machining shape defects have little influence on the mechanical behavior of brackets. The failure reason of small brackets is not the strength, but the instability.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2013 ◽  
Vol 805-806 ◽  
pp. 1575-1582 ◽  
Author(s):  
Weerapol Namboonruang ◽  
Rattanakorn Rawangkul ◽  
Wanchai Yodsudjai ◽  
Trakool Aramraks ◽  
Nutthanan Suphadon

Nowadays, materials used to construct house or building wall areconsidered not only in the physical material behaviour but also energy conscious and economic factor. Adding crumb rubber to the brick composite is one of many methods to develop the properties of bricks. As widely known,the finite element method (FEM) is a tool used for finding accurate solutions of the heat transfer equation of materials including the composite bricks. In this paper an investigation of the heat transfer of a soil cement brick containing crumb rubber particles, is presented and compared to results of finite element analysis (FEA) simulation. To determine the effect of crumb rubber to the heat transfer behaviour of soil cement brick, different volume fractions are varied by 10, 20, 30 and 40%. It was reported that a modelling application reveals good correspondence with the experimental results.


Author(s):  
Benjamin Hantz ◽  
Venkata M. K. Akula ◽  
John Leroux

For pressure vessels, loss of thickness detected during scheduled maintenance utilizing UT scans can be assessed based on Level 1 or 2 analyses as per API 579 guidelines. However, Level 1 and 2 analyses can point to excessively conservative assessments. Level – 3 assessments utilizing the finite element method can be performed for a more accurate estimate of the load carrying capacity of the corroded structure. However, for a high fidelity structural response prediction using the finite element method, the characteristics of the model must be accurately represented. Although the three nonlinearities, namely, the geometric, material, and contact nonlinearities can be adequately included in a finite element analysis, procedures to accurately include the thickness measurements are not readily available. In this paper, a tool to map thicknesses obtained from UT scans onto a shell based finite element models, to perform Level – 3 analyses is discussed. The tool works in conjunction with Abaqus/CAE and is illustrated for two different structures following the elastic-plastic analysis procedure outlined in the API 579 document. The tool is intended only as a means to reduce the modeling time associated with mapping thicknesses. The results of the analyses and insights gained are presented.


Author(s):  
Jiemin Liu ◽  
Guangtao Ma

A typical ground imitating tank is analyzed regarding it as the thin-walled structure composed of plates (skins) and beams (reinforcement) using finite element method (FEM). Through moving the location of reinforcements, make the skins close with the flanges of the reinforcements in order to imitate actually the connection of the skins and the reinforcements. The thickness of plates, the size and the geometry shape and the location of reinforcements are taken as parameters to be optimized. In calculation, not only consider effects of the oil-weight, the extra-pressure in tank and the dead weight of the tank on the stresses and displacements of the tank, but also analyze the effects of the inertia forces produced due to the rotation of the tank on the stresses and displacements. Displacement, stress and deformation distributions of the ground imitating tank under the three typical flying postures imitated are given.


Sign in / Sign up

Export Citation Format

Share Document