Development of Plant Performance Analysis System for Geothermal Power Plant

Author(s):  
Yoshinobu Nakao ◽  
Toru Takahashi ◽  
Yutaka Watanabe

Geothermal energy is considered a comparatively abundant renewable energy resource. The geothermal power generation system has negligible environmental impact (approximately 0.015kg-CO2/kWh), and it is expected to help prevent carbon dioxide emissions to the atmosphere. On the other hand, in our institute, we have developed general purpose software (EnergyWin™) to analyze the thermal efficiencies of power generation systems easily and rapidly. Such software can not only analyze the plant performance but also investigate the effect of the performance-deteriorated equipment or air condition change on power output quantitatively. Using this software, we have developed a new plant performance analysis system based on actual operation data for geothermal power plants. Then, applying the system to existing facilities, we have analyzed the plant performance and evaluated the effectiveness of the plant maintenance strategy during periodic inspection for consistency.

2021 ◽  
Author(s):  
Ziyodulla Yusupov ◽  
Mohamed Almaktar

Bulk power system based on fossil fuels becomes less reliable and stable in economic terms, technically more labor-consuming and harmful environmental impact. These problems have led many countries to find ways to supply the electricity from a green and sustainable energy source. The electricity derived from renewable energy sources such as hydro, solar, wind, biomass and geothermal refers to as green and sustainable energy. Geothermal energy is not only utilized for electric power generation, but it is also exploited to generate environmentally friendly heat energy. As of the end of 2018, geothermal global cumulative installed capacity exceeded 13 GW, generated an energy of about 630 peta joule (PJ). This chapter presents the geothermal energy resource in terms of the types of power plants, principle of the electricity generation and current world status of geothermal resource utilization. The issues such as advantages and disadvantages of geothermal energy economically and environmentally and means to overcome shortcomings are also considered. The main barriers for the development of geothermal industry include high resource and exploration risk, overall high development cost particularly drilling, and inadequate financing and grant support. The global averaged cost of electricity for the geothermal facility is nearly 0.072 USD/kWh as compared to 0.056 for onshore wind and 0.047 USD/kWh for hydropower. However, the technology is rather competitive to other renewables such as concentrating solar power (0.185 USD/kWh) and offshore wind (0.127 USD/kWh). Meanwhile, further research and development is critically needed to eliminate the non-condensable gases (NCGs) associated with the geothermal power generation.


Author(s):  
Michael O’Sullivan ◽  
Michael Gravatt ◽  
Joris Popineau ◽  
John O’Sullivan ◽  
Warren Mannington ◽  
...  

2006 ◽  
Vol 129 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Ahmet Dagdas

One of the most important cycles for electricity generation from geothermal energy is the double-flash cycle. Approximately 25% of the total geothermal based electricity generation all over the world comes from double-flash geothermal power plants. In this paper, performance analysis of a hypothetical double-flash geothermal power plant is performed and variations of fundamental characteristics of the plant are examined. In the performance analysis, initially, optimum flashing pressures are determined, and energy and exergy values of the base points of the plant are calculated. In addition, first and second law efficiencies of the power plant are calculated. Main exergy destruction locations are determined and these losses are illustrated in an exergy flow diagram. For these purposes, it is assumed that a hypothetical double-flash geothermal power plant is constructed in the conditions of western Turkey. The geothermal field where the power plant will be built produces geofluid at a temperature of 210°C and a mass flow rate of 200kg∕s. According to simulation results, it is possible to produce 11,488kWe electrical power output in this field. Optimum first and second flashing pressures are determined to be 530kPa and 95kPa, respectively. Based on the exergy of the geothermal fluid at reservoir, overall first and second law efficiencies of the power plant are also calculated to be 6.88% and 28.55%, respectively.


Author(s):  
Ana R. Diaz

The tendency in the world energy demand seems clear: it can only grow. The energetic industry will satisfy this demand-despite all its dialectic about new technologies-at least medium term mostly with current fossil fuel technologies. In this picture from an engineer’s point of view, one of the primary criterions for mitigating the effects of increasing atmospheric concentration of CO2 is to restrict the CO2 fossil fuel emissions into the atmosphere. This paper is focused on the analysis of different CO2 capture technologies for power plants. Indeed, one of the most important goal to concentrate on is the CO2 capture energy requirements, as it dictates the net size of the power plant and, hence, the net cost of power generation with CO2 avoidance technologies. Here, the Author presents a critical review of different CO2 absorption capture technologies. These technologies have been widely analyzed in the literature under chemical and economic points of view, leaving their impact on the energy power plant performance in a second plan. Thus, the central question examined in this paper is the connection between abatement capability and its energetic requirements, which seriously decrease power generation efficiency. Evidencing that the CO2 capture needs additional technical effort and establishing that further developments in this area must be constrained by reducing its energy requirements. After a comprehensive literature revision, six different chemical absorption methods are analyzed based on a simplified energetic model, in order to account for its energetic costs. Furthermore, an application case study is provided where the different CO2 capture systems studied are coupled to a natural gas cogeneration power plant.


2021 ◽  
pp. 1-31
Author(s):  
Somboon Sukpancharoen ◽  
poj hansirisawat ◽  
Thongchai Srinophakun

Abstract This study examined product separation in biodiesel power plants to optimise the process. Response Surface Methodology (RSM) was used to identify the optimum parameters for the process of separation, to maximise profitability while also reducing carbon dioxide emissions. The mass and energy balance was assessed using Aspen Plus software, while RSM was carried out with Design-Expert software. Development of the characteristic equation determined that the model for gasoline yield, power generation, and carbon dioxide emissions was significant at the 95% confidence level. The R-squared value predicted by the model was found to be 0.97–1.00. In an optimal plant, profit can rise by 3,836 USD over the year, while carbon dioxide emissions decline annually by 17.97 tons.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and the same technology as defined by reliability, availability, and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more base-loaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
A. Asnaghi ◽  
S. M. Ladjevardi ◽  
A. Haghparast Kashani ◽  
P. Saleh Izadkhast

In the current study, the performance analysis of a solar chimney power plant expected to provide off-grid electric power demand for villages located in Iranian central regions is presented. High annual average of solar radiation and available desert lands in the central parts of Iran are factors to encourage the full development of a solar chimney power plant for the thermal and electrical production of energy for various uses. The interested is in Kerman where solar radiation is much better than other areas of Iran. The obtained results clear that solar chimney power plants having 244 m diameter can produce from 25.3 to 43.2 MW h of electricity power on a site like Kerman during different months of a year, according to an estimation calculated from the monthly average of sunning. This power production is sufficient for the needs of the isolated areas and can even used to feed the main electrical grid.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Vittorio Tola ◽  
Giorgio Cau ◽  
Francesca Ferrara ◽  
Alberto Pettinau

Carbon capture and storage (CCS) represents a key solution to control the global warming reducing carbon dioxide emissions from coal-fired power plants. This study reports a comparative performance assessment of different power generation technologies, including ultrasupercritical (USC) pulverized coal combustion plant with postcombustion CO2 capture, integrated gasification combined cycle (IGCC) with precombustion CO2 capture, and oxy-coal combustion (OCC) unit. These three power plants have been studied considering traditional configuration, without CCS, and a more complex configuration with CO2 capture. These technologies (with and without CCS systems) have been compared from both the technical and economic points of view, considering a reference thermal input of 1000 MW. As for CO2 storage, the sequestration in saline aquifers has been considered. Whereas a conventional (without CCS) coal-fired USC power plant results to be more suitable than IGCC for power generation, IGCC becomes more competitive for CO2-free plants, being the precombustion CO2 capture system less expensive (from the energetic point of view) than the postcombustion one. In this scenario, oxy-coal combustion plant is currently not competitive with USC and IGCC, due to the low industrial experience, which means higher capital and operating costs and a lower plant operating reliability. But in a short-term future, a progressive diffusion of commercial-scale OCC plants will allow a reduction of capital costs and an improvement of the technology, with higher efficiency and reliability. This means that OCC promises to become competitive with USC and also with IGCC.


Sign in / Sign up

Export Citation Format

Share Document