Finite Element Analysis of a Slab Tank

Author(s):  
Yogeshwar Hari

The objective of this paper is to verify design of a slab tank. The slab tank is to store various criticality liquids used in today’s industry. The initial over all dimensions of the slab tank are determined from the capacity of the stored liquids. The design function is performed using the flat plate theory. The slab tank design is broken up into (a) two long side members, (b) two short side members, (c) top head, and (d) bottom head. It is supported from the bottom at a height by a rectangular plate enclosure. It is anchored at the rectangular plate enclosure. The deflection of the linear space is a critical requirement. Stresses are usually acceptable because the requirement is on the deflection. For vacuum condition the long side plates will deflect inwards. Flat plate equations are used to determine deflection and stress. For internal pressure condition the design pressure consists of working internal pressure plus static head pressure. For this the long side plates will deflect outwards. The heads are designed for internal pressure at the bottom where the pressure is the maximum. The designed dimensions are used to recalculate the stresses for the slab tank. The dimensioned slab tank is modeled using STAAD III finite element software. The stresses from the finite element software are compared to the stresses obtained from recalculated stresses obtained using flat plate theory. The difference in the stress values is explained. This paper’s main objective is to compare the flat plate theory to the finite element analysis. The design is found to be safe for the specific configuration considered.

2014 ◽  
Vol 889-890 ◽  
pp. 1406-1409 ◽  
Author(s):  
Ming Jian Jian ◽  
Guang Cheng Zhang ◽  
Du Qing Zhang

By finite element software ANSYS a model of GIS busbar tube was established for investigating the effect of the gas pressure on the shell. The results shows that the stress concentration degree is higher on the shoulder between the main tube and the branch pipes under the internal pressure and the gravity, and the highest value is 44.92MPa which is far lower than the admissible stress. Stress changed along the thickness direction, and its value decreased gradually from the inside out. The distributions of the strain and deformation are similar to that of the stress.


Author(s):  
Afewerki H. Birhane ◽  
Yogeshwar Hari

The objective of this paper is to design and analyze a horizontal tank on saddle supports. The horizontal vessel is to store various chemicals used in today’s industry. The over all dimensions of the horizontal vessel are determined from the capacity of the stored chemicals. These dimensions are first determined. The design function is performed using the ASME Code Sec VIII Div 1. The horizontal tank design is broken up into (a) shell design, (b) two elliptical heads and (c) two saddle supports. The designed dimensions are used to recalculate the stresses for the horizontal vessel. The dimensioned horizontal vessel with saddle supports and the saddle support structure is modeled using STAAD III finite element software. The stresses from the finite element software are compared with the stresses obtained from calculated stresses by ASME Code Sec VIII Div 1 and L. P. Zick’s analysis printed in 1951. The difference in the stress value is explained. This paper’s main objective is to compare the code design to the finite element analysis. The design is found to be safe for the specific configuration considered.


Author(s):  
Yogeshwar Hari

The objective of this paper is to determine the maximum allowable working pressure per ASME Code [1] of a slab tank using finite element analysis [2]. The slab tank is to store various criticality liquids used in today’s industry. The slab tank has been designed on the basis of the capacity of the stored liquids. The slab tank design is consists of (a) two long side members, (b) two short side members, (c) top head, and (d) bottom head. The slab tank is supported from the bottom at a height by a rectangular plate enclosure. The heads are designed for internal pressure and static pressure at the bottom where the pressure is the maximum. The slab tank has been designed to withstand internal pressure plus static pressure due to liquid head. The procedure used to determine MAWP is as follows: (1) The dimensioned slab tank is modeled using STAAD III finite element software. (2) Two loading conditions are used: (a) internal pressure; (b) static pressure due to liquid head; (c) combined internal pressure plus static pressure. The maximum stress and deflection is evaluated at the above three conditions for determination of MAWP. The stress due to the static pressure due to liquid will remain the same. Only the stress due to internal pressure can be changed by changing the internal pressure. New internal pressure is calculated to meet the ASME code stress criteria, which then will be the MAWP condition. A procedure is established to determine the MAWP of slab tanks using FEA.


Author(s):  
Yogeshwar Hari

The objective of this paper is to design an annular tank. The annular tank is to store various criticality liquids used in today’s industry. The initial over all dimensions of the annular tank are determined from the capacity of the stored liquids. The design function is performed using the ASME Code Sec VIII Div 1. The annular tank design is broken up into (a) outer cylinder, (b) inner cylinder, (c) top cover, and (d) bottom head. It is supported at the bottom. It is anchored at the top. The deflection of the annular space is a critical requirement. Stresses are usually acceptable because the requirement is on the deflection. For vacuum condition the outer cylinder can be treated for external pressure and the inner cylinder can be treated for internal pressure. For internal pressure condition the design pressure consists of working internal pressure plus static head. For this the outer cylinder can be treated for internal pressure and the inner cylinder can be treated for external pressure. The covers are designed for internal pressure at the bottom where the pressure is the maximum. The designed dimensions are used to recalculate the stresses for the annular tank. The dimensioned annular tank is modeled using STAAD III finite element Software. The stresses from the finite element Software are compared to the stresses obtained from recalculated stresses obtained using ASME Code Sec VIII Div 1. The difference in the stress values is explained. This paper’s main objective is to compare the ASME Code to the finite element analysis. The design is found to be safe for the specific configuration considered. In addition the annular tank is checked for temperature and seismic load conditions, which the code does not address.


Author(s):  
Peter Carter ◽  
D. L. Marriott ◽  
M. J. Swindeman

This paper examines techniques for the evaluation of two kinds of structural imperfection, namely bulging subject to internal pressure, and out-of-round imperfections subject to external pressure, with and without creep. Comparisons between comprehensive finite element analysis and API 579 Level 2 techniques are made. It is recommended that structural, as opposed to material, failures such as these should be assessed with a structural model that explicitly represents the defect.


2013 ◽  
Vol 690-693 ◽  
pp. 2327-2330
Author(s):  
Ming Bo Han ◽  
Li Fei Sun

By using finite element software, the paper establishes the main stand analysis model of the Ф140 pipe rolling mill and provides the model analysis of main stand in cases of full load. Verify the design of main stand fully comply with the technical requirements .In this paper, it provides the theoretical position of split casting and welding method using electric slag welding.


Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


2017 ◽  
Vol 62 (3) ◽  
pp. 1881-1887
Author(s):  
P. Ramaswami ◽  
P. Senthil Velmurugan ◽  
R. Rajasekar

Abstract The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA) and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench) results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h). By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.


Sign in / Sign up

Export Citation Format

Share Document