A Model to Predict Stratification in Two Phase Flow in Horizontal Pipes

Author(s):  
Rajnish K. Calay ◽  
Ahmad Awad

Stratified flow is encountered in many situations. The flow of hydrocarbons transported in horizontal pipes often gets stratified. The prediction of pressure drop and liquid hold-up is essential for reservoir and pipe management and optimizing the cost of transportation of constituents. The present paper presents a simple mathematical model to predict the pressure drop, water and oil hold up and stratified layer. A good agreement with the experimental data was found. The model will be further developed and incorporated within a numerical model in order to investigate the flow field characteristics and establish correlations for a wide range of parameters.

Author(s):  
I˙smail Teke ◽  
O¨zden Ag˘ra ◽  
Hakan Demir ◽  
S¸. O¨zgu¨r Atayılmaz

In this study, the several well known two-phase viscosity models were used for predicting two-phase flow pressure drop in a smooth tube using Computational Fluid Dynamics (CFD) software at homogenous flow conditions. Pressure drop for two different mass flux values (300 and 650 kg/m2s) for R134a with a saturation temperature of 45 °C in a smooth tube has been modeled according to the homogenous flow model and the results have been compared with the analytical formulas and experimental data from the literature. Three different average viscosity correlations were used. It is seen that the numerical results are in a good agreement with the homogenous flow model and fall in ± 30% band. Also, the results derived from the average viscosity expression are in a good agreement with the results calculated using separated two-phase flow correlations. In addition to this, Artificial Neural Networks (ANNs) were employed for predicting the pressure drop in a horizontal smooth pipe. The trained network gives the best values over the correlations with less than 1% mean relative error.


Author(s):  
Christian Weinmu¨ller ◽  
Dimos Poulikakos

Microfluidics has experienced a significant increase in research activities in recent years with a wide range of applications emerging, such as micro heat exchangers, energy conversion devices, microreactors, lab-on-chip devices and micro total chemical analysis systems (μTAS). Efforts to enhance or extend the performance of single phase microfluidic devices are met by two-phase flow systems [1, 2]. Essential for the design and control of microfluidic systems is the understanding of the fluid/hydrodynamic behavior, especially pressure drop correlations. These are well established for single phase flow, however, analytical correlations for two-phase flow only reflect experimentally obtained values within an accuracy of ± 50% [3, 4]. The present study illustrates the effect of two-phase flow regimes on the pressure drop. Experimental measurement data is put into relation of calculated values based on established correlations of Lockhart-Martinelli with Chisholm modifications for macroscopic flows [5, 6] and Mishima-Hibiki modifications for microscale flows [7]. Further, the experimental pressure drop data is superimposed onto two-phase flow maps to identify apparent correlations of pressure drop abnormalities and flow regimes. The experiments were conducted in a square microchannel with a width of 200 μm. Optical access is guaranteed by an anodically bonded glass plate on a MEMS fabricated silicon chip. Superficial velocities range from 0.01 m/s to 1 m/s for the gas flow and from 0.0001 m/s to 1 m/s for the liquid flow with water as liquid feed and CO2 as gas. The analysis of the flow regimes was performed by imaging the distinct flow regimes by laser induced fluorescence microscopy, employing Rhodamine B as the photosensitive dye. The pressure drop was synchronically recorded with a 200 mbar, 2.5 bar and 25 bar differential pressure transmitter and the data was exported via a LabView based software environment, see Figure 1. Figure 2 illustrates the experimentally obtained pressure drop in comparison to the calculated values based on the Lockhard-Martinelli correlation with the Chisholm modification and the Mishima-Hibiki modification. For both cases the predications underestimate the two-phase pressure drop by more than 50%. Nevertheless, the regression of the experimental data has an offset of linear nature. Two-phase flow is assigned to flow regime maps of bubbly, wedging, slug or annular flow defined by superficial gas and liquid velocities. In Figure 3 the pressure drop is plotted as a surface over the corresponding flow regime map. Transition lines indicate a change of flow regimes enclosing an area of an anticline in the pressure data. In the direct comparison between the calculated and the measured values, the two surfaces show a distinct deviation. Especially, the anticline of the experimental data is not explained by the analytical correlations. Figure 4 depicts the findings of Figure 3 at a constant superficial velocity of 0.0232 m/s. The dominant influence of the flow regimes on the pressure drop becomes apparent, especially in the wedging flow regime. The evident deviation of two-phase flow correlations for the pressure drop is based on omitting the influence of the flow regimes. In conclusion, the study reveals a strong divergence of pressure drop measurements in microscale two-phase flow from established correlations of Lockhart-Martinelli and recognized modifications. In reference to [8, 9], an analytical model incorporating the flow regimes and, hence, predicting the precise pressure drop would be of great benefit for hydrodynamic considerations in microfluidics.


Author(s):  
Akira Kariyasaki ◽  
Akiharu Ousaka ◽  
Tohru Fukano ◽  
Masazumi Kagawa

The effects of forced vibrations on the motion of air-water two-phase mixture were studied in 2.4mm I.D. horizontal tube over rather wide range of flow conditions (about 60 flows for lateral vibration, 4 flows and 1 stagnant mixture for longitudinal vibration). 13 different modes of sinusoidal vibration with 1–8mm amplitude and 1–7.7 Hz frequency were exerted on the test tube. Pressure drop, void fraction and flow pattern of the two-phase flow were compared to those of the flow without forced vibration. It was made clear that the lateral vibration exerted on the tube induced a self exciting fluctuation of the pressure drop for a specific flow condition and longitudinal vibration on the tube promoted the bubble coalescence.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Manmatha K. Roul ◽  
Sukanta K. Dash

Two-phase flow pressure drops through thin and thick orifices have been numerically investigated with air–water flows in horizontal pipes. Two-phase computational fluid dynamics (CFD) calculations, using the Eulerian–Eulerian model have been employed to calculate the pressure drop through orifices. The operating conditions cover the gas and liquid superficial velocity ranges Vsg = 0.3–4 m/s and Vsl = 0.6–2 m/s, respectively. The local pressure drops have been obtained by means of extrapolation from the computed upstream and downstream linearized pressure profiles to the orifice section. Simulations for the single-phase flow of water have been carried out for local liquid Reynolds number (Re based on orifice diameter) ranging from 3 × 104 to 2 × 105 to obtain the discharge coefficient and the two-phase local multiplier, which when multiplied with the pressure drop of water (for same mass flow of water and two phase mixture) will reproduce the pressure drop for two phase flow through the orifice. The effect of orifice geometry on two-phase pressure losses has been considered by selecting two pipes of 60 mm and 40 mm inner diameter and eight different orifice plates (for each pipe) with two area ratios (σ = 0.73 and σ = 0.54) and four different thicknesses (s/d = 0.025–0.59). The results obtained from numerical simulations are validated against experimental data from the literature and are found to be in good agreement.


2021 ◽  
Vol 17 (2) ◽  
pp. 371-383
Author(s):  
Xinke Yang ◽  
Shanzhi Shi ◽  
Hui Zhang ◽  
Yuzhe Yang ◽  
Zilong Liu ◽  
...  

2004 ◽  
Vol 126 (1) ◽  
pp. 107-118 ◽  
Author(s):  
J. L. Pawloski ◽  
C. Y. Ching ◽  
M. Shoukri

The void fractions, flow regimes, and pressure drop of air-oil two-phase flow in a half-inch diameter pipe over a wide range of test conditions have been investigated. The flow regimes were identified with the aid of a 1000 frames per second high-speed camera. A capacitance sensor for instantaneous void fraction measurements was developed. The mean and probability density function of the instantaneous void fraction signal can be used to effectively identify the different flow regimes. The current flow regime data show significant differences in the transitional boundaries of the existing flow regime maps. Property correction factors for the flow regime maps are recommended. The pressure drop measurements were compared to the predictions from four existing two-phase flow pressure drop models. Though some of the models performed better for certain flow regimes, none of the models were found to give accurate results over the entire range of flow regimes.


Sign in / Sign up

Export Citation Format

Share Document