A Simplified Technique for Shakedown Load Determination of a 90 Degree Pipe Bend Subjected to Constant Internal Pressure and Cyclic In-Plane Bending

Author(s):  
Hany F. Abdalla ◽  
Maher Y. A. Younan ◽  
Mohammed M. Megahed

In this paper a simple technique is presented to determine the shakedown load of a 90 degree pipe bend subjected to constant internal pressure and cyclic in-plane bending using the finite element method. Through the proposed technique, the shakedown load is determined without performing time consuming cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown load is determined through performing only two analyses namely; an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the shakedown load is determined through the calculation of the residual stresses developed in the pipe bend. In the elastic analysis, performed only once and stored, an in-plane closing moment is applied preserving structure stresses within the material elastic range. In the elastic-plastic analysis, a constant internal pressure, below the pressure to cause yielding, is applied in addition to an increasing moment magnitude that causes the material yield strength to be exceeded. For verification purposes, the results of the simplified technique are compared to the results of full cyclic loading finite element simulations where the pipe bend is subjected to constant internal pressure and cyclic in-plane closing moment loading. In order to have confidence in the proposed technique, it is applied beforehand on the Bree cylinder [1] subjected to constant internal pressure and cyclic high heat fluxes across its wall. The results of the proposed technique showed very good correlation with the, analytically determined, Bree diagram of the cylinder.

2006 ◽  
Vol 128 (4) ◽  
pp. 618-624 ◽  
Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

In this paper a simplified technique is presented to determine the shakedown limit load of a 90-degree pipe bend subjected to constant internal pressure and cyclic in-plane closing bending moment using the finite element method. The simplified technique determines the shakedown limit load without performing time consuming full elastic-plastic cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit load is determined by performing two finite element analyses namely; an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the shakedown limit load is determined through the calculation of the residual stresses developed in the pipe bend. In order to gain confidence in the simplified technique, the output shakedown limit moments are used to perform full elastic-plastic cyclic loading simulations to check for shakedown behavior of the pipe bend. The shakedown limit moments output by the simplified technique are used to generate the shakedown diagram of the pipe bend for a range of constant internal pressure magnitudes. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. In order to get acquainted with the simplified technique, it is applied beforehand to a bench mark shakedown problem namely, the Bree cylinder (Bree, J., 1967, J. Strain Anal., 3, pp. 226–238) problem. The Bree cylinder is subjected to constant internal pressure and cyclic high heat fluxes across its wall. The results of the simplified technique showed very good correlation with the analytically determined Bree diagram of the cylinder.


2017 ◽  
Vol 62 (3) ◽  
pp. 1881-1887
Author(s):  
P. Ramaswami ◽  
P. Senthil Velmurugan ◽  
R. Rajasekar

Abstract The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA) and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench) results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h). By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

The present paper determines collapse moments of pressurized 30°–180° pipe bends incorporated with initial geometric imperfection under out-of-plane bending moment. Extensive finite element analyses are carried out considering material as well as geometric nonlinearity. The twice-elastic-slope method is used to determine collapse moment. The results show that initial imperfection produces significant change in collapse moment for unpressurized pipe bends and pipe bends applied to higher internal pressure. The application of internal pressure produces stiffening effect to pipe bends which increases collapse moment up to a certain limit and with further increase in pressure, collapse moment decreases. The bend angle effect on collapse moment reduces with the increase in internal pressure and bend radius. Based on finite element results, collapse moment equations are formed as a function of the pipe bend geometry parameters, initial geometric imperfection, bend angle, and internal pressure for elastic-perfectly plastic material models.


1986 ◽  
Vol 108 (1) ◽  
pp. 15-19
Author(s):  
L. Y. Chen ◽  
M. R. Williams

The design of threaded connectors based on an elastic analysis appears overly conservative. This, in turn, will result in unnecessary material and manufacturing costs. To improve cost effectiveness, the design of connectors from the elastic-plastic viewpoint is warranted. This paper presents a simplified approach on the elastic-plastic finite element analysis of connectors. This approach would save tremendous computer costs which may be incurred in conducting a regular elastic-plastic analysis of threaded connectors.


1970 ◽  
Vol 92 (2) ◽  
pp. 309-316 ◽  
Author(s):  
E. P. Popov ◽  
M. Khojasteh-Bakht ◽  
P. Sharifi

Sixteen ASME standard torispherical heads attached to cylinders and subjected to internal pressure are analyzed as elastic and/or elastic-plastic shells using a new finite element. As basic elements, thin-walled frusta with curved meridians having common tangents and radii at the nodal circles are employed assuring good accuracy of the results. In the plastic analysis each wall-thickness was subdivided into concentric lamina in order to monitor the behavior of the material. The incremental law of plasticity in conjunction with the Mises yield condition and the associated flow rule were used in the inelastic range. The results of the analysis are presented in detail and are compared with the provisions of the ASME Pressure Vessel Code.


Author(s):  
K. M. Prabhakaran ◽  
S. R. Bhate ◽  
V. Bhasin ◽  
A. K. Ghosh

Piping elbows under bending moment are vulnerable to cracking at crown. The structural integrity assessment requires evaluation of J-integral. The J-integral values for elbows with axial part-through internal crack at crown under in-plane bending moment are limited in open literature. This paper presents the J-integral results of a thick and thin, 90-degree, long radius elbow subjected to in-plane opening bending moment based on number of finite element analyses covering different crack configurations. The non-linear elastic-plastic finite element analyses were performed using WARP3D software. Both geometrical and material nonlinearity were considered in the study. The geometry considered were for Rm/t = 5, and 12 with ratio of crack depth to wall thickness, a/t = 0.15, 0.25, 0.5 and 0.75 and ratio of crack length to crack depth, 2c/a = 6, 8, 10 and 12.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


Sign in / Sign up

Export Citation Format

Share Document