Steady-State Response Evaluation of Shape Memory Alloy Wire Under Resistive Heating Using a Newly Developed Element-Free Galerkin Meshless Method

Author(s):  
A. Ghazavi ◽  
H. A. Sepiani ◽  
F. Ebrahimi ◽  
A. Rastgo

The studies on shape memory alloys show their much extended application field. Nowadays, many researches are carried out to solve constitutive equations of various models of SMAs. In this research, a macro-scale, phenomenological constitutive model for SMAs is used in conjunction with energy balance equations to study the evolution of temperature and deformation profiles seen in SMA wires under specific thermal and mechanical boundary conditions. In this way, the general fully-coupled thermomechanical formula for resistive heating of an SMA wire-initial detwined martensite leads to strain recovery on heating is used and numerical results are obtained with use of “Meshless” method. Comparisons have been made between the results predicted by proposed EFG method and available reference solutions in the literature, generated either analytically or numerically. A good agreement is obtained between the achieved results and the literature.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ling Yao ◽  
Lixia Ren ◽  
Guoli Gong

Chloride diffusion is the major factor that affects the life of concrete structures. The time-fractional order equation can be used to describe anomalous diffusion in reinforced concrete. In this work, a time-fractional model of chloride diffusion is solved via the meshless method. The Element-Free Galerkin (EFG) meshless method does not require meshing. One-dimensional and two-dimensional numerical examples are presented. Numerical results are in good agreement with theoretical solutions. The initiation time of corrosion is predicted in the presented model. Simulation results are compared with experimental data. The good agreement between EFG and experimental data indicates that time-fractional chloride diffusion in concrete can be modeled effectively by using the EFG method. This method is beneficial for further research on anomalous chloride diffusion in concrete.


Author(s):  
B. N. Rao ◽  
S. Rahman

This paper presents a Galerkin-based meshless method for calculating stress-intensity factors (SIFs) for a stationary crack in two-dimensional functionally graded materials of arbitrary geometry. The method involves an element-free Galerkin method (EFGM), where the material properties are smooth functions of spatial co-ordinates and two newly developed interaction integrals for mixed-mode fracture analysis. These integrals can also be implemented in conjunction with other numerical methods, such as the finite element method (FEM). Five numerical examples including both mode-I and mixed-mode problems are presented to evaluate the accuracy of SIFs calculated by the proposed EFGM. Comparisons have been made between the SIFs predicted by EFGM and available reference solutions in the literature, generated either analytically or by FEM using various other fracture integrals or analyses. A good agreement is obtained between the results of the proposed meshless method and the reference solutions.


Author(s):  
Rajib Chowdhury ◽  
B. N. Rao ◽  
A. Meher Prasad

This paper presents an efficient meshless method for analyzing linear-elastic cracked structures subject to single- or mixed-mode loading conditions. The method involves an element-free Galerkin formulation in conjunction with an exact implementation of essential boundary conditions and a new weight function. The proposed method eliminates the shortcomings of Lagrange multipliers typically used in element-free Galerkin formulations. Numerical examples show that the proposed method yields accurate estimates of stress-intensity factors and near-tip stress field in two-dimensional cracked structures. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing required by finite element method (FEM) is avoided. By sidestepping remeshing requirement, crack-propagation analysis can be dramatically simplified. An example problem on mixed-mode condition is presented to simulate crack propagation. The agreement between the predicted crack trajectories by the proposed meshless method and FEM is excellent. In recent years, a class of Galerkin-based meshfree or meshless methods have been developed that do not require a structured mesh to discretize the problem, such as the element-free Galerkin method, and the reproducing kernel particle method. These methods employ a moving least-squares approximation method that allows resultant shape functions to be constructed entirely in terms of arbitrarily placed nodes. Meshless discretization presents significant advantages for modeling fracture propagation. Since no element connectivity data are needed, the burdensome remeshing required by the finite element method (FEM) is avoided. A growing crack can be modeled by simply extending the free surfaces, which correspond to the crack. Although meshless methods are attractive for simulating crack propagation, because of the versatility, the computational cost of a meshless method typically exceeds the cost of a regular FEM. Also in some cases, the MLS which is the bases of the meshless method may form an ill-conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved element-free Galerkin method based on an improved moving least-square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill-conditioned system of equations. Numerical examples are presented to illustrate the computational efficiency and accuracy of the proposed improved element-free Galerkin method.


2011 ◽  
Vol 101-102 ◽  
pp. 343-347
Author(s):  
Yong Qing Liu ◽  
Rong Jun Cheng ◽  
Hong Xia Ge

In this paper, the first order time derivative of time fractional partial differential equations are replaced by the Caputo fractional order derivative. We derive the numerical solution of this equation using the Element-free Galerkin (EFG) method. In order to obtain the discrete equation, a various method is used and the essential boundary conditions are enforced by the penalty method. Numerical examples are presented and the results are in good agreement with exact solutions.


2018 ◽  
Vol 29 (9) ◽  
pp. 1818-1834 ◽  
Author(s):  
Hojjat Badnava ◽  
Mohammad Mashayekhi ◽  
Mahmoud Kadkhodaei ◽  
Ahmad Amiri-Rad

A three-dimensional, implicit gradient-enhanced, fully coupled thermomechanical constitutive model is developed within the framework of thermodynamic principles for NiTi shape memory alloys. This work focuses on unstable behaviors of NiTi samples under different thermomechanical loading conditions. Temperature variation and its coupling effect on non-local behavior of a shape memory alloy during a loading–unloading cycle at different strain rates are considered. The proposed constitutive equations are implemented into the finite element software ABAQUS, and the numerical investigations indicate that the used procedure is an effective computational tool for simulation of several behaviors of NiTi samples including phase front nucleation and propagation, stress–strain–temperature responses, and transformation-induced stress relaxation. The obtained results are shown to be in a good agreement with available experimental and numerical findings in the literature. The effectiveness of the model in removing mesh sensitivity is evaluated by investigating the mesh-dependence issue for the low strain rate problems through numerical examples.


2013 ◽  
Vol 62 (3) ◽  
Author(s):  
Siaw Ching Liew ◽  
Su Hoe Yeak

In this paper, a new numerical method which is based on the coupling between multiscale method and meshless method with penalty is developed for 2D Burgers’ equation. The advantage of meshless method over the finite element method (FEM) is that remeshing process is not required. This is because the meshless method approximation is constructed entirely in terms of a set of nodes. Since the moving least squares (MLS) shape function does not satisfy the Kronecker delta property, so penalty method is adopted to enforce the essential boundary conditions in this paper. In order to obtain the fine scale approximation, the local enrichment basis is applied. The local enrichment basis may adopt the polynomial basis functions or any other analytical basis functions. Here, the polynomial basis functions are chosen as local enrichment basis. This multiscale meshless method with penalty will provide a more accurate result especially in the critical region which requires higher accuracy. It is believed that this proposed method is an attractive approach for solving more general problems which involve large deformation.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
H. Pirali ◽  
F. Djavanroodi ◽  
M. Haghpanahi

In this paper a combined node searching algorithm for simulation of crack discontinuities in meshless methods called combined visibility and surrounding triangles (CVT) is proposed. The element free Galerkin (EFG) method is employed for stress analysis of cracked bodies. The proposed node searching algorithm is based on the combination of surrounding triangles and visibility methods; the surrounding triangles method is used for support domains of nodes and quadrature points generated at the vicinity of crack faces and the visibility method is used for points located on the crack faces. In comparison with the conventional methods, such as the visibility, the transparency, and the diffraction method, this method is simpler with reasonable efficiency. To show the performance of this method, linear elastic fracture mechanics analyses are performed on number of standard test specimens and stress intensity factors are calculated. It is shown that the results are in good agreement with the exact solution and with those generated by the finite element method (FEM).


Sign in / Sign up

Export Citation Format

Share Document