Assessment of Ductile Crack Growth Based on a Local Approach

Author(s):  
Tae-Rin Lee ◽  
Yoon-Suk Chang ◽  
Jae-Boong Choi ◽  
Young-Jin Kim

The influence of stress triaxiality was a matter of concern on ductile fracture to explain geometry dependent fracture resistance characteristics of specimens and real structures during past two decades. Regarding the issue, recently, interests for local approach and micro-mechanical damage models are increased again in accordance with progress of computational environments. In this paper, the applicability of a local approach is investigated through a series of finite element (FE) analyses incorporating both a modified GTN model and a Rousselier model as well as fracture toughness tests. The ductile crack growth behaviour of SA515 Gr.60 carbon steel is assessed to guarantee transferability of fracture resistance curve from typical specimens with different in-plane and out-of-plane sizes. The material parameters are determined by calibration of test results and corresponding numerical analyses results, and used to simulate the fracture behaviour of CT specimens. Then, a comparison is drawn between the numerically estimated crack resistance curves and experimentally determined ones. Finally, the Rousselier model is applied to estimate J-R curves of circumferential through-wall cracked pipe. The comparison results showed that the two damage models can be used as promising solutions for ductile crack growth simulation.

2005 ◽  
Vol 297-300 ◽  
pp. 2403-2409 ◽  
Author(s):  
Yoon Suk Chang ◽  
T.R. Lee ◽  
Jae Boong Choi ◽  
Young Jin Kim

The influences of stress triaxiality on ductile fracture have been emphasized to explain the geometry independent fracture resistance characteristics of specimens and structures during past two decades. For the estimation of this material behavior, two-parameter global approach and local approach can be used as case by case manner. Recently, the interests for the local approach and micro-mechanical damage model are increased again due to progress of computational environments. In this paper, the applicability of the local approach has been assessed through a series of finite element analyses incorporating both modified GTN model and Rousselier model. The ductile crack growth behaviors are examined to guarantee the transferability on different sizes and geometries of C(T) specimens and SE(T) specimens. The material fitting constants are determined from calibration of tensile tests and numerical analyses results, and used to simulate the fracture behaviors of typical specimens. Then, a comparison is drawn between the numerically estimated crack resistance curves and experimentally determined ones. The comparison results show a good agreement and the two damage models are regarded as promising solutions for ductile crack growth simulation.


2007 ◽  
Vol 345-346 ◽  
pp. 1361-1364
Author(s):  
Yoon Suk Chang ◽  
Jong Min Kim ◽  
Chang Sung Seok ◽  
Jae Boong Choi ◽  
Young Jin Kim

The present work deals with an applicability of the local approach to assess in-plane size effects among different sized compact tension (CT) specimens. To characterize ductile crack growth of typical nuclear materials, SA515 Gr.60 and SA516 Gr.70 carbon steels, finite element analyses employing modified GTN and Rousselier models as well as fracture toughness tests were carried out. Material damage parameters were calibrated using standard CT specimens and reflected to predict fracture resistance (J-R) curves of larger CT specimens. Since comparison results between numerically estimated J-R curves and experimentally determined ones corresponded well, it is anticipated that the local approach might be used as a promising tool for ductile fracture evaluation incorporating the in-plane size effect.


Author(s):  
Satoshi Igi ◽  
Mitsuru Ohata ◽  
Takahiro Sakimoto ◽  
Kenji Oi ◽  
Joe Kondo

This paper presents experimental and analytical results focusing on the strain limit of X80 linepipe. Ductile crack growth behavior from a girth weld notch is simulated by FE analysis based on a proposed damage model and is compared with the experimental results. The simulation model for ductile crack growth accompanied by penetration through the wall thickness consists of two criteria. One is a criterion for ductile crack initiation from the notch-tip, which is described by the plastic strain at the notch tip, because the onset of ductile cracking can be expressed by constant plastic strain independent of the shape and size of the components and the loading mode. The other is a damage-based criterion for simulating ductile crack extension associated with damage evolution influenced by plastic strain in accordance with the stress triaxiality ahead of the extending crack tip. The proposed simulation model is applicable to prediction of ductile crack growth behaviors from a circumferentially-notched girth welded pipe with high internal pressure, which is subjected to tensile loading or bending (post-buckling) deformation.


Author(s):  
Peter James ◽  
Mike Ford

Within the EU 7th framework programme, STYLE, a number of large-scale tests have been performed. One of these tests, Mock-Up 2 (MU-2), was performed on a through wall crack located at a repair weld adjacent to a multi-pass narrow-gap weld. The aim of MU-2 was to investigate ductile crack growth under conditions with significant levels of residual stress. As part of the materials testing programme, low-constraint fracture specimens (three-point bend specimens with a/t=0.1) were extracted from the weld to test the weld materials fracture toughness. An overview of these tests is provided here. However, these low constraint tests demonstrated somewhat unusual fatigue crack growth on inserting the crack, leading to the crack depth being shorter in the centre of the specimens to the outside. Subsequently, although it has not been possible to use these specimens to determine the materials J-R curve, it does provide a features test for ductile modelling with the Gurson-Tvergaard-Needleman (GTN) local approach model for ductile crack growth. This paper provides an overview of the modelling associated to understand these observations, including an estimate of the retained residual stress, fatigue growth estimates and subsequent ductile modelling. An overview of the calibration of the GTN model is also provided using the weld material’s tensile tests, high constraint compact-tension tests and MU-2.


2007 ◽  
Vol 539-543 ◽  
pp. 2186-2191 ◽  
Author(s):  
Mitsuru Ohata ◽  
Takuya Fukahori ◽  
Fumiyoshi Minami

This study pays attention to reveal the material properties that control resistance curve for ductile crack growth (CTOD-R curve) on the basis of the mechanism for ductile crack growth, so that the R-curve could be numerically predicted only from those properties. The crack growth tests using 3-point bend specimens with fatigue pre-crack were conducted for two steels that have different ductile crack growth resistance with almost the same CTOD level for crack initiation, whereas both steels have the same “Mechanical properties” in terms of strength and work hardenability. The observation of crack growth behaviors provided that different mechanisms between ductile crack initiations from fatigue pre-crack and subsequent growth process could be applied. It was found that two “Mechanical properties” associated with ductile damage of steel could mainly influence CTOD-R curve; one is a resistance of ductile crack initiation estimated with critical local strain for ductile cracking from the surface of notched specimen, and the other one is a dependence of stress triaxiality on ductility obtained with circumferentially notched round-bar specimens. The damage model for numerically simulating the R-curve was proposed taking the two “ductile properties” into account, where ductile crack initiation from crack-tip was in accordance with critical local strain based criterion, and subsequent crack growth GTN (Gurson-Tvergaard-Needleman) based triaxiality dependent damage criterion. The proposed model accurately predicted the measured R-curve for the two steels used with the same “strength properties” through ductile crack initiation to growth.


2020 ◽  
Vol 10 (4) ◽  
pp. 1374
Author(s):  
Lin Su ◽  
Jie Xu ◽  
Wei Song ◽  
Lingyu Chu ◽  
Hanlin Gao ◽  
...  

The effect of strength mismatch (ratio between the yield stress of weld metal and base metal, My) on the ductile crack growth resistance of welding pipe was numerically analyzed. The ductile fracture behavior of welding pipe was determined while using the single edge notched bending (SENB) and single edge notched tension (SENT) specimens, as well as axisymmetric models of circumferentially cracked pipes for comparison. Crack growth resistance curves (as denoted by crack tip opening displacement-resistance (CTOD-R curve) have been computed using the complete Gurson model. A so-called CTOD-Q-M formulation was proposed to calculate the weld mismatch constraint M. It has been shown that the fracture resistance curves significantly increase with the increase of the mismatch ratio. As for SENT and pipe, the larger My causes the lower mismatch constraint M, which leads to the higher fracture toughness and crack growth resistance curves. When compared with the standard SENB, the SENT specimen and the cracked pipe have a more similar fracture resistance behavior. The results present grounds for justification of usage of SENT specimens in fracture assessment of welding cracked pipes as an alternative to the traditional conservative SENB specimens.


1999 ◽  
Vol 121 (4) ◽  
pp. 369-374 ◽  
Author(s):  
N. Hagiwara ◽  
N. Oguchi

Fatigue behavior of electrically resistance welded (ERW) line pipes with a gouge in a dent was experimentally investigated. After denting and machining a gouge, fluctuating internal pressure was applied to line pipes. The fatigue behavior differed above and below the threshold Q(Qth), as a function of defect size and fracture toughness. When Q < Qth, ductile crack growth was observed with a consequent decrease in fatigue life. On the contrary, fatigue crack growth was observed when Q ≧ Qth. Fatigue life was predictable with an experimentally based power law equation incorporating dent depth, gouge depth, and hoop stress amplitude when Q ≧ Qth.


Sign in / Sign up

Export Citation Format

Share Document