Development of Passive Controlled Structure Assembled With L-Type Diaphragm

Author(s):  
Tadashi Mikoshiba ◽  
Chikahiro Minowa ◽  
Masakazu Terai ◽  
Yujiro Hiyama ◽  
Takanori Sato ◽  
...  

Using the high-strength bolted connection, it is possible to control the quality of the joint and improve the construction of the structure. By setting the energy absorption mechanism on the structure and enhancing the damping effect, it makes it possible to scale back the influence of the earthquake. Based on the statement above, a new type of beam column joint (L-type Diaphragm) was developed and tests and analysis were conducted to validate the performance of this joint and the energy absorption characteristics at the end of the beam were surveyed. The stress transfer mechanism of the joint was investigated in the shaking table test of the actual size frame structure with this joint. As a result, it was found effective and a higher reliability.

Author(s):  
Tadashi Mikoshiba ◽  
Chikahiro Minowa ◽  
Takanori Sato ◽  
Li Shao ◽  
Toshio Chiba

Under the effect of a large earthquake, the range of plastic comes into the column and the beam of the frame structure. By using energy dissipation devices, it is possible to reduce the response and the damage of the structure. A friction type damper which was a compact form and had high damping characteristics, was developed. It was made of steel plate, aluminum sliding plate, rubber washer and high tension bolt. To validate the performance of the new damper, the elemental tests and the shaking table test were conducted. In the shaking table test, frame structure composed of full scale member with friction damper was excited by actual seismic wave. As a result, it was found effective and had a high damping performance. This paper mainly reports the results of the shaking table test.


Author(s):  
Hong-Nan Li ◽  
Yan-Gang Zhao ◽  
Chen Li ◽  
Yong-Wei Yin

Structural passive control devices have widely used in various engineering projects for resisting the wind load or earthquake excitation until now. The friction damper and sand isolation technology among them are of many advantages, such as easy installation, less cost and less maintenance fee. In this paper, a new type of energy-dissipated structural system for the reconstructive building with the story-increased frame is presented and investigated, in which the sliding-friction layer with sand between the lowest increased floor of outer frame structure and roof of original building is applied, and friction energy-dissipated dampers are used for the connections between the columns of outer frame and each floor of original building. A simplified analytical model of this system is proposed. For more appropriate theoretical analysis, the non-classical damping approach is introduced to calculation. The shaking table test is performed on the model of system to verify the effectiveness of the above seismic reduction system and proposed method. The results show that friction and energy-dissipated devices are very effective in reducing the seismic response and dissipating the input energy of model structure.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940004 ◽  
Author(s):  
Dongsheng Du ◽  
Shuguang Wang ◽  
Weiwei Li ◽  
Feng Xu ◽  
Weiqing Liu

A series of shaking table tests were performed to investigate the seismic behavior of the pre-fabricated steel frame structure infilled with autoclaved aerated concrete (AAC) external wall panels. The reliability of a new type of joint connections adopted in the structure between the steel frame and the wall panels was particularly validated during the test. Dynamic tests were carried out on a two-story full-scaled steel frame, considering seismic loading of three earthquake waves with different imposed peak accelerations in the range of 70[Formula: see text]cm/s2 to 400[Formula: see text]cm/s2. The experimental analyses encompassed cracking patterns, failure mechanisms, dynamic property and seismic response of the structure. The results show that the structural components, including the joint connections between the steel frame and the walls, behaved well even under the rare earthquake at 8∘. The structural stiffness of the steel frame infilled with wall panels was increased by 56%, compared with the steel frame infilled without wall panels. The damping ratio of the undamaged steel frame installed with wall panels was 7.25%.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Shuaihua Ye ◽  
Zhuangfu Zhao

Based on the equivalent mass-spring model and considering the coupling effect between creep soil and prestressed anchors, the dynamic calculation model of prestressed anchors with frame structure is established. The soil mass is expressed in the form of concentrated mass. The action of the frame structure on the soil is treated as a parallel coupling of a linear spring and a linear damper, and the free section of the anchor is treated as a linear spring. Considering the creep characteristics, the soil is regarded as a Generalized Kelvin body and the anchoring section of the anchor is regarded as an equivalent spring body, which are coupled in parallel. Considering the effect of slope height, the dynamic calculation model is solved and the seismic response is analyzed. Finally, an engineering example is used to verify the calculation method in this paper, and the results are compared with the shaking table test and numerical simulation. It shows that the calculation model proposed in this paper is safe and reasonable for the seismic design and analysis of the slope supported by prestressed anchors with frame structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tingting Wang ◽  
Jianhua Shao ◽  
Chao Zhao ◽  
Wenjin Liu ◽  
Zhanguang Wang

To investigate the seismic performance of buckling-restrained braces under the earthquake action, the shaking table test with a two-story 1/4 scale model is carried out for the ordinary pure steel frame and the buckling-restrained bracing steel frame with low-yield-point steel as the core plate. The failure modes, dynamic characteristics, acceleration response, interstory drift ratio, strain, shear force, and other mechanical properties of those two comparative structures subjected to different levels of seismic waves are mainly evaluated by the experiment. The test results show that under the action of seismic waves with different intensities, the apparent observations of damage occur in the pure frame structure, while no obvious or serious damage in the steel members of BRB structure is observed. With the increase in loading peak acceleration for the earthquake waves, the natural frequency of both structures gradually decreases and the damping ratio gradually increases. At the end of the test, the stiffness degradation rate of the pure frame structure is 11.2%, while that of the buckling-restrained bracing steel frame structure is only 5.4%. The acceleration response of the buckling-restrained bracing steel frame is smaller than that of the pure steel frame, and the acceleration amplification factor at the second story is larger than that at the first story for both structures. The average interstory drift ratios are, respectively, 1/847 and 1/238 for the pure steel frame under the frequent earthquake and rare earthquake and are 1/3000 and 1/314 for the buckling-restrained bracing steel frame, which reveals that the reduction rate of lateral displacement reaches a maximum of 71.71% after the installation of buckling-restrained brace in the pure steel frame. The strain values at each measuring point of the structural beam and column gradually increase with the increase of the peak seismic acceleration, but the strain values of the pure steel frame are significantly larger than those of the buckling-restrained bracing steel frame, which indicates that the buckling-restrained brace as the first seismic line of defense in the structure can dramatically protect the significant structural members. The maximum shear force at each floor of the structure decreases with the increase in height, and the shear response of the pure frame is apparently higher than that of the buckling-restrained bracing structure.


2016 ◽  
Vol 81 (729) ◽  
pp. 1859-1868
Author(s):  
Masatoshi SHINOHARA ◽  
Hiroshi ISODA ◽  
Hidemaru SHIMIZU

2020 ◽  
Vol 10 (16) ◽  
pp. 5414
Author(s):  
Guoshan Xu ◽  
Zhen Wang ◽  
Yintong Bao ◽  
Ge Yang ◽  
Bin Wu

To improve the experimental accuracy and stability of shaking table substructure testing (STST), an explicit central difference method (CDM) and a three-variable control method (TVCM) with velocity positive feedback (VPF) are proposed in this study. First, the explicit CDM is presented for obtaining an improved control accuracy of the boundary conditions between the numerical and experimental substructures of STST. Compared with the traditional CDM, the proposed method can provide explicit control targets for displacement, velocity, and acceleration. Furthermore, a TVCM-VPF is proposed to improve the control stability and accuracy for loading the explicit control targets of displacement, velocity, and acceleration. The effectiveness of the proposed methods is validated by experiments on a three-story frame structure with a tuned liquid damper loaded on an old shaking table originally designed with the traditional displacement control mode. The experimental results show that the proposed explicit CDM works well, and the response rate and control accuracy of the shaking table are significantly improved with the contribution of the TVCM-VPF compared with those of the traditional proportional integral derivative (PID) controller. This indicates the advantage of the proposed TVCM-VPF over the traditional PID for STST. A comparison between the traditional shaking table test and STST shows that when the latter is based on the TVCM-VPF, it exhibits an excellent performance in terms of the stability and accuracy of displacement and an acceptable performance in terms of the acceleration accuracy.


Author(s):  
Yuko SHIMADA ◽  
Motoki AKAZAWA ◽  
Yosuke ITO ◽  
Yuichi MATSUOKA ◽  
Satoshi YAMADA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document