Micromechanical Modeling of Fiber Reinforced Metal Laminates Under Biaxial Deformation

Author(s):  
H. A. Sepiani ◽  
A. Afaghi-Khatibi ◽  
M. Mosavi-Mashhadi

This presentation examines theoretically the elastic behavior of fiber reinforced metal laminates composed of layers of two types. Woven flexible fabric and metal, in which woven flexible fabric layer includes of sinusoidal shaped fibers. The composite is subjected under biaxial/uniaxial deformation. The theoretical analysis is based upon the Lagrangian description of deformation and the strain-energy density which is assumed to be a function of the Lagrangian strain components referring to the principle material coordinates. The micromechanical model has been obtained using strain energy of components. Finally, the model was solved numerically and then results were compared with published literatures.

Author(s):  
V. Bheemreddy ◽  
L. Dharani ◽  
K. Chandrashekhara ◽  
G. Hilmas ◽  
W. Fahrenholtz

Continuous fiber reinforced ceramic composites (CFCCs) are widely used in high performance and high temperature applications. The behavior of CFCCs under various conditions is not easily predicted. Micromechanical modeling of CFCCs using a representative volume element (RVE) approach provides useful prediction of the composite behavior. Conventionally, the effect of fiber-matrix interface on effective property prediction of the CFCCs is not considered in the micromechanical modeling approach. In the current work, a comprehensive three-dimensional micromechanical modeling procedure is proposed for effective elastic behavior estimation of CFCCs. Application of the micromechanical model for various interfaces has been considered to evaluate the effect of different interfaces and highlight the applicability of current model. Cohesive damage modeling approach is used to model the crack growth along with fiber bridging. The finite element model is validated by comparing with available data in the literature.


2016 ◽  
Vol 51 (5) ◽  
pp. 705-720 ◽  
Author(s):  
RS Choudhry ◽  
Kamran A Khan ◽  
Sohaib Z Khan ◽  
Muhammad A Khan ◽  
Abid Hassan

This study introduces a unit cell-based finite element micromechanical model that accounts for correct post cure fabric geometry, in situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber-reinforced phenolic composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography tests. Moreover, it utilizes an analytical expression to update the input material properties to account for in situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for finite element micromechanics models of 8-harness satin weave composites. The unit cell method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Gao ◽  
Qinglin Guo ◽  
Yanhua Guo ◽  
Pingchuan Wu ◽  
Wenqing Meng ◽  
...  

Short fibers have been widely used to prepare the fiber reinforced asphalt concrete (FRAC). However, internal interactions between fiber and other phases of asphalt concrete are unclear although experimental methods have been used to design the FRAC successfully. In this paper, numerical method was used to investigate the reinforced mechanism of FRAC from microperspective. 2D micromechanical model of FRAC was established based on Monte Carlo theory. Effects of fiber length and content on stress state of asphalt mortar, effective modulus, and viscoelastic deformation of asphalt concrete were investigated. Indirect tensile stiffness modulus (ITSM) test and uniaxial creep test were carried out to verify the numerical results. Results show that maximum stress of asphalt mortar is lower compared to the control concrete when the fiber length is longer than 12 mm. Fiber reduces the stress level of asphalt mortar significantly. Fiber length has no significant influence on the effective modulus of asphalt concrete. Fiber length and content both have notable impacts on the viscoelastic performance of FRAC. Fiber length should be given more attention in the future design of FRAC except the content.


Author(s):  
Qiang Chen ◽  
Xuefeng Chen ◽  
Zhi Zhai ◽  
Xiaojun Zhu ◽  
Zhibo Yang

In this paper, a multiscale approach has been developed for investigating the rate-dependent viscoplastic behavior of polymer matrix composites (PMCs) with thermal residual stress effect. The finite-volume direct averaging micromechanics (FVDAM), which effectively predicts nonlinear response of unidirectional fiber reinforced composites, is incorporated with improved Bodner–Partom model to describe the viscoplastic behavior of PMCs. The new micromechanical model is then implemented into the classical laminate theory, enabling efficient and accurate analysis of multidirectional PMCs. The proposed multiscale theory not only predicts effective thermomechanical viscoplastic response of PMCs but also provides local fluctuations of fields within composite microstructures. The deformation behaviors of several unidirectional and multidirectional PMCs with various fiber configurations are extensively simulated at different strain rates, which show a good agreement with the experimental data found from the literature. Influence of thermal residual stress on the viscoplastic behavior of PMCs is closely related to fiber orientation. In addition, the thermal residual stress effect cannot be neglected in order to accurately describe the rate-dependent viscoplastic behavior of PMCs.


2021 ◽  
pp. 002199832110075
Author(s):  
Minchang Sung ◽  
Hyunchul Ahn ◽  
Jinhyeok Jang ◽  
Dongil Kwon ◽  
Woong-Ryeol Yu

The fracture strain of carbon fiber-reinforced plastics (CFRPs) within CFRP/steel hybrid laminate composites is reportedly higher than that of CFRPs due to transverse compressive stress induced by the steel lamina. A micromechanical model was developed to explain this phenomenon and also to predict the mechanical behavior of CFRP/steel hybrid laminate composites. First, the shear lag theory was extended to calculate stress distributions on fibers and matrix material in a CFRP under multiaxial stress condition, considering three deformation states of matrix (elastic and plastic deformation and fracture) and the transverse compressive stress. Then, the deformation behavior of CFRP was predicted using average stress in the ineffective region and the Weibull distribution of carbon fibers. Finally, the mechanical properties of CFRP/steel hybrid laminate composites were predicted by considering the thermal residual stress generated during the manufacturing process. The micromechanical model revealed that increased transverse compressive stress decreases the ineffective lengths of partially broken fibers in the CFRP and results in increased fracture strain of the CFRP, demonstrating the validity of the current micromechanical model.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1154 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Fuh ◽  
Lee

Additive manufacturing (commonly known as 3D printing) is defined as a family of technologies that deposit and consolidate materials to create a 3D object as opposed to subtractive manufacturing methodologies. Fused deposition modeling (FDM), one of the most popular additive manufacturing techniques, has demonstrated extensive applications in various industries such as medical prosthetics, automotive, and aeronautics. As a thermal process, FDM may introduce internal voids and pores into the fabricated thermoplastics, giving rise to potential reduction on the mechanical properties. This paper aims to investigate the effects of the microscopic pores on the mechanical properties of material fabricated by the FDM process via experiments and micromechanical modeling. More specifically, the three-dimensional microscopic details of the internal pores, such as size, shape, density, and spatial location were quantitatively characterized by X-ray computed tomography (XCT) and, subsequently, experiments were conducted to characterize the mechanical properties of the material. Based on the microscopic details of the pores characterized by XCT, a micromechanical model was proposed to predict the mechanical properties of the material as a function of the porosity (ratio of total volume of the pores over total volume of the material). The prediction results of the mechanical properties were found to be in agreement with the experimental data as well as the existing works. The proposed micromechanical model allows the future designers to predict the elastic properties of the 3D printed material based on the porosity from XCT results. This provides a possibility of saving the experimental cost on destructive testing.


Author(s):  
Anaïs Farrugia ◽  
Charles Winkelmann ◽  
Valeria La Saponara ◽  
Jeong Sik Kim ◽  
Anastasia H. Muliana

In service, composite structures present the unique challenge of damage detection and repair. Piezoelectric ceramic, such as lead zirconate titanate (PZT), is often used for detecting damage in composites. This paper investigates the effect of embedded PZT crystals on the overall creep behavior of sandwich beams comprising of glass fiber reinforced polymer laminated skins and polymer foam core, which could potentially be used as a damage-detecting smart structure. Uniaxial quasi-static and creep tests were performed on the glass/epoxy laminated composites having several fiber orientations, 0 deg, 45 deg, and 90 deg, to calibrate the elastic and viscoelastic properties of the fibers and matrix. Three-point bending creep tests at elevated temperature (80°C) were then carried out for a number of control sandwich beams (no PZT crystal) and conditioned sandwich beams (with PZT crystals embedded in the center of one facesheet). Lateral deflection of the sandwich beams was monitored for more than 60 h. The model presented in this paper is composed by two parts: (a) a simplified micromechanical model of unidirectional fiber reinforced composites used to obtain effective properties and overall creep response of the laminated skins and (b) a finite element method to simulate the overall creep behavior of the sandwich beams with embedded PZT crystals. The simplified micromechanical model is implemented in the material integration points within the laminated skin elements. Fibers are modeled as linear elastic, while a linearized viscoelastic material model is used for the epoxy matrix and foam core. Numerical results on the creep deflection of the smart sandwich beams show good correlations with the experimental creep deflection at 80°C, thus proving that this model, although currently based on material properties reported at room temperature, is promising to obtain a reasonable prediction for the creep of a smart sandwich structure at high temperatures.


2007 ◽  
Vol 28 (6) ◽  
pp. 722-732 ◽  
Author(s):  
Ji Hoon Kim ◽  
Hansun Ryou ◽  
Myoung-Gyu Lee ◽  
Kwansoo Chung ◽  
Jae Ryoun Youn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document