scholarly journals Eliminating Conservatism in the Piping System Analysis Process Through Application of a Suite of Locally Appropriate Seismic Input Motions

Author(s):  
Anthony L. Crawford ◽  
Robert E. Spears ◽  
Mark J. Russell

Seismic analysis is of great importance in the evaluation of nuclear systems due to the heavy influence such loading has on their designs. Current Department of Energy seismic analysis techniques for a nuclear safety-related piping system typically involve application of a single conservative seismic input applied to the entire system [1]. A significant portion of this conservatism comes from the need to address the overlapping uncertainties in the seismic input and in the building response that transmits that input motion to the piping system. The approach presented in this paper addresses these two sources of uncertainty through the application of a suite of 32 earthquake realizations with equal probability of occurrence whose collective performance addresses the total uncertainty while each individual motion represents a single variation of it. It represents an extension of the soil-structure interaction analysis methodology of SEI/ASCE 43-05 [2] from the structure to individual piping components. Because this approach is computationally intensive, automation and other measures have been developed to make such an analysis efficient. These measures are detailed in this paper.

Author(s):  
Abhinav Gupta

This paper presents results from some of the recent studies on seismic analysis of multiply supported piping systems. The seismic responses for an actual feedwater piping system as evaluated from the conventional uncoupled analysis are compared with those obtained from an analysis of the coupled building-piping system. A discussion is also presented on the significance of non-classical damping in such analyses. It is illustrated that the composite modal damping is just another form of classical damping. Consideration of composite modal damping in a coupled analysis can give inaccurate piping responses when the modes of uncoupled systems are nearly tuned. In such systems, the effect of nonclassical damping is quite significant. Since the floor spectra are neither generated nor required in a coupled systems analysis, methods like peak broadening or peak shifting cannot be used directly to account for the effect of uncertainties. Formulations are presented to evaluate the design response from a coupled system analysis by considering the effect of uncertainties in modal properties of uncoupled systems.


Author(s):  
Paolo Pezzini ◽  
David Tucker ◽  
Alberto Traverso

A new emergency shutdown procedure for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test, and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide a means of quantifying risk mitigation strategies. An open-loop system analysis regarding the dynamic effect of bleed air, cold air bypass, and load bank is presented in order to evaluate the combination of these three main actuators during emergency shutdown. In the previous Hybrid control system architecture, catastrophic compressor failures were observed when the fuel and load bank were cut off during emergency shutdown strategy. Improvements were achieved using a nonlinear fuel valve ramp down when the load bank was not operating. Experiments in load bank operation show compressor surge and stall after emergency shutdown activation. The difficulties in finding an optimal compressor and cathode mass flow for mitigation of surge and stall using these actuators are illustrated.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
R. E. Spears ◽  
S. R. Jensen

Nonlinearities, whether geometric or material, need to be addressed in seismic analysis. One good analysis method that can address these nonlinearities is direct time integration with Rayleigh damping. Modal damping is the damping typically specified in seismic analysis Codes and Standards (ASCE 4-98, 1998, “Seismic Analysis of Safety-Related Nuclear Structures and Commentary,” American Society of Civil Engineers, Reston, Virginia and ASCE/SEI 43-05, 2005, “Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities,” American Society of Civil Engineers, Reston, Virginia.). Modal damping is constant for all frequencies where Rayleigh damping varies with frequency. An approach is proposed here for selection of Rayleigh damping coefficients to be used in seismic analyses that is consistent with given modal damping. The approach uses the difference between the modal damping response and the Rayleigh damping response along with effective mass properties of the model being evaluated to match overall system response levels. This paper provides a simple example problem to demonstrate the approach. It also provides results for a finite element model representing an existing piping system. Displacement, acceleration, and stress results are compared from model runs using modal damping and model runs using Rayleigh damping with coefficients selected using the proposed method.


Author(s):  
Gaurav P. Bhende

The recent natural calamities, especially earthquakes, are making engineering design requirements stringent. The Process Plant Piping is no exception to it. Analyzing the seismic effect by ‘Static Equivalent Method’ is a common practice compared to performing ‘Dynamic Analysis’. This paper starts with the basic reason of earthquake and its effect on the above ground piping system. Further it compares between the results opted based on computer based ‘Spectrum Analysis (Dynamic Analysis) Method’ and ‘Static Equivalent Method’ as per the requirements of ASCE 7. One of the assumptions in Static or Dynamic seismic analysis is — ‘Pipe supports are rigid’. However, in reality the supports, especially structural supports, show elastic behavior based on their material and geometric properties. At the end, this paper compares between the results of seismic analysis performed by considering ‘Supports as rigid’ and ‘Supports as elastic’ and comments on it along with minimum requirements for safe design.


1979 ◽  
Author(s):  
H. C. Daudet ◽  
C. A. Kinney

This paper presents a discussion of the significant results of a study program conducted for the Department of Energy to evaluate the potential for closed cycle gas turbines and the associated combustion heater systems for use in coal fired public utility power plants. Two specific problem areas were addressed: (a) the identification and analysis of system concepts which offer high overall plant efficiency consistent with low cost of electricity (COE) from coal-pile-to-bus-bar, and (b) the identification and conceptual design of combustor/heat exchanger concepts compatible for use as the cycle gas primary heater for those plant systems. The study guidelines were based directly upon the ground rules established for the ECAS studies to facilitate comparison of study results. Included is a discussion of a unique computer model approach to accomplish the system analysis and parametric studies performed to evaluate entire closed cycle gas turbine utility power plants with and without Rankine bottoming cycles. Both atmospheric fluidized bed and radiant/convective combustor /heat exchanger systems were addressed. Each incorporated metallic or ceramic heat exchanger technology. The work culminated in conceptual designs of complete coal fired, closed cycle gas turbine power plants. Critical component technology assessment and cost and performance estimates for the plants are also discussed.


Author(s):  
Sang Hoon Lee ◽  
Kwang Hoon Yoo

Liquefaction potential on the specific site of nuclear power plant is analyzed and reviewed. The layered site for this study consists of silt and sand. Based on the limited available soil data, maximum shear strength at critical locations using Seed & Idriss method and computer program SHAKE is calculated, and liquefaction potential is reviewed. As seismic input motion used for the assessment of liquefaction, the artificial time history compatible with the US NRC Regulatory Guide 1.60 is used. Assessment results of the liquefaction are validated by analyzing to the other typical soil foundations which can show the effects on the foundation depth and soil data.


Author(s):  
Fabrizio Paolacci ◽  
Md. Shahin Reza ◽  
Oreste S. Bursi ◽  
Arnold M. Gresnigt ◽  
Anil Kumar

A significant number of damages in piping systems and components during recent seismic events have been reported in literature which calls for a proper seismic design of these structures. Nevertheless, there exists an inadequacy of proper seismic analysis and design rules for a piping system and its components. Current seismic design Codes are found to be over conservative and some components, e.g., bolted flange joints, do not have guidelines for their seismic design. Along this line, this paper discusses about the main issues on the seismic analysis and design of industrial piping systems and components. Initially, seismic analysis and component design of refinery piping systems are described. A review of current design approaches suggested by European (EN13480:3) and American (ASME B31.3) Codes is performed through a Case Study on a piping system. Some limits of available Codes are identified and a number of critical aspects of the problem e.g., dynamic interaction between pipes and rack, correct definition of the response factor and strain versus stress approach, are illustrated. Finally, seismic performance of bolted flange joints based on the results of experimental investigations carried out by the University of Trento, Italy, will be discussed.


Author(s):  
Akihito Otani ◽  
Tadahiro Shibutani ◽  
Masaki Morishita ◽  
Izumi Nakamura ◽  
Tomoyoshi Watakabe ◽  
...  

A Code Case in the framework of JSME Nuclear Codes and Standards is currently being developed to incorporate seismic design evaluation of piping by detailed elastic-plastic response analysis and strain-based fatigue criteria as an alternative design rule to the current rule, in order to provide a more rational seismic design evaluation. The Code Case provides two strain-based criteria; one is a limit to maximum amplitude of equivalent strain amplitude derived from detailed analysis and the other is a limit to the fatigue usage factor also based on the equivalent strain amplitude. A guideline for piping seismic analysis based on inelastic response analysis is also being developed as a mandatory appendix for the code case. The guideline provides the methodology to obtain the elastic and plastic strains in seismic response and contains descriptions for analysis code, FE modeling including material property definition, time history analysis method, damping, seismic input condition and verification and validation method. This paper introduces the outlines of them.


Sign in / Sign up

Export Citation Format

Share Document