Effect of Interface Wedge Angle in Ceramic Side on Tensile Bonding Strength in Ceramic to Metal Joint

Author(s):  
Masayoshi Tateno ◽  
Hiroki Morikawa ◽  
Kunio Kokubo

This study was performed to clarify the dependence of ceramic-to-metal joint bonding strength on the interface wedge angle on the ceramic side. Plate Si3N4-to-Ni joints with a plane interface were produced by electric discharge machining. The geometric interface shape at the edge of the interface is characterized by wedge angle on both sides of the ceramic and metal defined as a configuration angle between the free surface of each material and the interface. As the wedge angle of Ni is a right angle, the wedge angle of Si3N4 is set from 30° to 180°. Joints were bonded at high temperature using thin braze metal under vacuum and cooled slowly. The tensile bonding strength of the ceramic-to-metal joint was evaluated to determine the optimum interface shape. The highest bonding strength appeared under identical interface conditions where the fracture pattern changed. The optimum wedge angle to obtain the greatest bonding strength appears to depend on bonding temperature. This study provided a useful geometric interface shape to improve the tensile bonding strength of ceramic-to-metal joints.

Author(s):  
Masayoshi Tateno ◽  
Eiichirou Yokoi

This study was performed to clarify dependences of bonding strength on the interface wedge angle in the metal side of ceramic-to-metal joint. Each plate Si3N4 and Ni used for this experiment is produced by wire electric discharge machining. The geometric interface shape at the edge of the interface is characterized by wedge angle on both side of the ceramic and metal defined as a configuration angle between the free surface of each material and the interface. As the wedge angle of Si3N4 is a right angle, the wedge angle of Ni is set from 30° to 180°. Joint specimens were bonded at high temperature using braze metal of 0.05mm thickness under vacuum and cooled slowly. The tensile bonding strength of the ceramic-to-metal joint was evaluated to determine the optimum interface shape. The highest bonding strength appeared under identical interface conditions where the fracture pattern changed. This study provided a useful geometric interface shape to improve the tensile bonding strength of ceramic-to-metal joint.


Author(s):  
Masayoshi Tateno ◽  
Eiichiro Yokoi

The focus of this study is to clarify a dependence of bonding strength of ceramic to metal joint on interface wedge angle in metal side. Each plate Si3N4-to-Cu or Ni joint with plane interface is produced by electric discharge machining. Geometrical shape at the edge of the interface is characterized by wedge angle defined as a configuration angle between free surface of each material and the interface. As the wedge angle of Si3N4 is right angle, the wedge angle of metal is set over from 30° to 180°. Each joint is bonded at high temperature by using thin braze metal under vacuum and slowly cooled. Tensile bonding strength of the joint is evaluated. Result shows that decrease of the wedge angle of metal side from right angle improves the bonding strength since it decreases the residual stress near edge of the interface on ceramic side. The highest bonding strength appears at the identical interface condition where fracture pattern changes. It appears that optimum edge angle for obtaining the highest bonding strength depends on bonding temperature and combination of bonded materials. This paper provides a useful geometrical interface shape to improve tensile bonding strength of ceramic to metal joint.


Author(s):  
Masayoshi Tateno ◽  
Hiroki Morikawa

This study correlates the stress intensity factors (Kii, Kpaii), the order of the stress singularity p-1, and the practical bonding strength of ceramic to metal joints with arbitrary interface geometry. First, in order to describe the stress behavior of TiB2 to Ni joints bonded at 1173K, the stress singularity factors (Kii, Kpaii, p-1) were theoretically derived for wedge angles of φ1:30°<φ1<150°. Secondly, the dependences of the singularity factors on the wedge angle φ1 were compared with experimental results using the same wedge angles on TiB2 to Ni joints with interface convexity or concavity produced by Electric Discharge Machining (EDM). In order to obtain the highest strength joints, the optimum interface shape is determined using the relationship between the singularity factors.


MRS Advances ◽  
2020 ◽  
Vol 5 (33-34) ◽  
pp. 1765-1774
Author(s):  
Shunsuke Muraoka ◽  
Masayoshi Tateno

AbstractResidual stress can considerably weaken systems with ceramics-to-metal joints. Herein, we investigate the dependence of bonding strength and residual stress variation of a ceramics-to-metal joint system on the interface wedge angle and bonding temperature condition. First, disparity between large-scale displacement models with varying work-hardening parameters was confirmed using thermal elastoplastic Finite Element Method (FEM) analysis. Each interface wedge shape was set to a plane surface to compare FEM results to experimental results related to the effect of the interface wedge angle on the practical bonding strength. The experimental results were specifically for a system consisting of Si3N4-WC/TiC/TaC bonded to Ni plate. The effects of the wedge angle of the metal side on residual stress near the interface edge were numerically predicted using FEM models. The interface wedge angles for this model, φ1 and φ2, were defined using the configuration angle between the interface and free surfaces of both materials. The numerical results showed that the stress σr on the free surface of the ceramic side was concentrated near the interface edge at which discontinuity in the stress state is generated. Dependence of the residual stress variation on both the wedge angle and temperature conditions can be predicted. It was confirmed that the bonding strength improves with decreasing residual stress in geometrical conditions. Therefore, residual stress appears to be a predominant factor affecting bonding strength. The observed fracture pattern showed that the fracture originated near the interface edges, after which small cracks propagated on the ceramic side. The residual stress is presumed to dominate bonding strength as the fracture occurred near the interface edge of the ceramic side. Results showed that the maximum bonding strength appears at the geometrical condition where the fracture pattern changes to φ2 lower than 90° of joint bonded at 980 °C. Therefore, the optimum interface wedge angle depends on a combination of materials and bonding temperature conditions, because the weak point of the bonded joint system will affect the stiffness balance of both materials and the adhesion power of the bonded interface.


Author(s):  
Masayoshi Tateno ◽  
Yohei Hatano ◽  
Kunio Kokubo

Selection of the optimum shape for interface edge can produce significant increases in the strength of bonded dissimilar materials such as ceramic to metal joints. The focus of this study is to clarify an effect of interface edge shape on bonding strength of ceramic to metal joint. Each plate Si3N4 to Ni joint with arc interface of convexity or concavity is produced by Electric Discharge machining. The arc interface is characterized by edge angle defined as a configuration angle between tangential line at the edge of the interface and the free surface of the ceramic. Each joint is bonded at high temperature by using thin braze metal under vacuum and slowly cooled. A good fit on each bonded face is achieved in this process. The dependence of the bonding strength on the edge angle is experimentally clarified. The result shows that changing the edge angle from the right angle improves the bonding strength since it decreases the residual stress near edge of the interface. The highest bonding strength always appears at the identical interface condition where fracture pattern changes. It appears that the optimum edge angle for obtaining the highest bonding strength depends on bonding temperature.


Author(s):  
Masayoshi Tateno ◽  
Yoshiaki Hagiwara ◽  
Kunio Kokubo

The focus of this study is to clarify the effect of the interface edge shape on the bonding strength of ceramic to metal joint. Each silicon nitride to copper joint plate with arc-shaped free surfaces edge was produced by Electric Discharge machining (EDM). The interface edge shape was characterized by defining the edge angle as a configuration angle between the interface plane and tangential line at the arc edge of the bonded interface. Each joint was bonded at high temperature using thin braze metal under vacuum and slowly cooled. Good fit was achieved at each bonded face in this process. The dependence of the bonding strength on the edge angle was experimentally clarified in Silicon nitride to Copper joint with arc-shaped free surfaces. The result shows that changing the edge angle from right angle improves bonding strength since it decreases residual stress near the interface edge. The highest bonding strength appears at the specific interface where the fracture pattern changes. It also shows that secondary machining, which cuts both edges into optimum geometrical conditions after bonding, can improve bonding strength.


2019 ◽  
Vol 6 (3) ◽  
pp. 18-00566-18-00566
Author(s):  
Reiichi TOKUMOTO ◽  
Syunsuke MURAOKA ◽  
Takashi TOMINAGA ◽  
Masayoshi TATENO

2017 ◽  
Vol 2017 (0) ◽  
pp. 109
Author(s):  
Reiichi TOKUMOTO ◽  
Takashi TOMINAGA ◽  
Eiichiriu YOKOI ◽  
Masayoshi TATENO

2011 ◽  
Vol 694 ◽  
pp. 896-900 ◽  
Author(s):  
Yu Xin Li ◽  
De Yong Chen ◽  
Jun Bo Wang

This paper presents a method of low temperature adhesive bonding and stress isolation for MEMS resonant pressure sensor hermetic packaging using non-photosensitive benzo-cyclo-butene (BCB) from Dow Co. According to the bonding process, pre-bake time, pumping time, pressure placed on the sensor and the thickness of crosslink layer are the most important factors. Stress isolation is designed to minimize thermal stresses to the resonant pressure sensor package. Experimental results show that this bonding process is a viable for MEMS resonant pressure sensor with the bonding temperature below 250°C, measured bonding strength more than 30MPa, the temperature drift less than 0.05%/°C in the range of -40°C to 70°C(10% of that without stress isolation), and the bonding strength maintains well after thermal treatments, handling, bench testing and implantations.


2000 ◽  
Author(s):  
A. K. Saha ◽  
H. Zhang ◽  
V. Prasad

Abstract Czochralski (Cz) growth during seeding and shouldering of silicon single crystal has been studied. During seeding, the diameter increases from a small value to the desired value of the fully-grown crystal. The convection in the melt, conduction in the crystal and radiation from the melt surface and crystal, surface tension at the free surface of the melt and crystal rotation have been considered to investigate the effect of seeding on thermal transport. The rotational Reynolds number, the radiation from the crystal and Marangoni number are varied to investigate their effect on the interface shape. A few selected cases have been studied using a cylindrical crystal to understand the effect of geometry on the heat transfer rate and subsequently on the interface shape. The governing equations are solved using the curvilinear finite volume discretization scheme and the grids are redistributed using the multizone adaptive grid generation after each iteration. The movement of free surface is taken care by employing suitable equations for energy and stress balance. Results show the dependency of both the radiation from the crystal and rotation of the crystal on the interface shape.


Sign in / Sign up

Export Citation Format

Share Document