Seismic Response Analysis for Sloshing of a Single-Deck Floating Roof With Center Pontoon in Oil Storage Tank

Author(s):  
Shoichi Yoshida ◽  
Kazuyoshi Sekine ◽  
Tomohiko Tsuchida ◽  
Katsuki Iwata

Floating roofs are widely used to prevent evaporation of contents of large cylindrical oil storage tanks. The 2003 Tokachi-Oki earthquake caused severe damage to floating roofs due to liquid sloshing. Seven single-deck floating roofs deformed to leak oil on them, and they lost buoyancy to sink. Two of them were the single-deck type with center pontoon in large diameter tanks. The present paper deals with an axisymmetric finite element analysis for the sloshing response of a floating roof with center pontoon. The hydrodynamic coupling of the fluid and the floating roof under seismic excitation is taken into consideration in the analysis. The fluid is assumed to be incompressible and inviscid, and the roof is assumed to be linear elastic. In addition, the sidewall and the bottom are assumed to be rigid. In the finite element analysis, the behavior of the fluid is formulated in terms of dynamic pressure using the Eulerian approach. The basic vibration characteristics of the single-deck floating roof with center pontoon, such as the natural periods and vibration modes, can be obtained from this analysis. These characteristics are shown comparing with those of the single-deck floating roof without center pontoon. The seismic response analysis for the input of an earthquake wave is also performed.

Author(s):  
Shoichi Yoshida ◽  
Kazuyoshi Sekine ◽  
Tsukasa Mitsuta

The floating roofs are widely used to prevent evaporation of content in large aboveground oil storage tanks. The 2003 Tokachi-Oki earthquake caused severe damage to the floating roofs due to liquid sloshing. The structural integrity of the floating roofs for the sloshing is urgent issue to establish in petrochemical and oil refining industries. This paper presents the axisymmetric finite element analysis for the sloshing response of floating roofs in cylindrical storage tanks. The hydrodynamic coupling of fluid and floating roof under seismic excitation is taken into consideration in the analysis. It is assumed that the fluid is incompressible and inviscid, and the roof is linear elastic while the sidewall and the bottom are rigid. The theory for the finite element analysis in which the behavior of the fluid is formulated in terms of dynamic pressure as the Eulerian approach is developed. The basic vibration characteristics of the floating roof, such as natural periods and vibration modes, can be obtained from this analysis. These will give engineers important information on the floating roof design.


Author(s):  
Michiya Sakai ◽  
Ryuya Shimazu ◽  
Shinichi Matsuura ◽  
Ichiro Tamura

In the seismic response analysis of piping systems, finite element analysis is performed with analysis method guidelines [1]–[4] established based on benchmark analysis. However, since it takes a great deal of effort to carry out finite element analysis, a simplified method to analyze the seismic response of complex piping systems is required. In this research, we propose a method to reduce an equivalent spring-mass system model with low degrees of freedom, which can take into account the main mode of the complicated piping system. Simplified seismic evaluation is carried out using this spring mass system model with low degrees of freedom, and the accuracy of response evaluation is confirmed by comparison with finite element analysis.


2013 ◽  
Vol 663 ◽  
pp. 87-91
Author(s):  
Ying Bo Pang

As an effective way of passive damping, isolation technology has been widely used in all types of building structures. Currently, for its theoretical analysis, it usually follows the rigid foundation assumption and ignores soil-structure interaction, which results in calculation results distortion in conducting seismic response analysis. In this paper, three-dimensional finite element method is used to establish finite element analysis model of large chassis single-tower base isolation structure which considers and do not consider soil-structure interaction. The calculation results show that: after considering soil-structure interaction, the dynamic characteristics of the isolation structure, and seismic response are subject to varying degrees of impact.


Author(s):  
M. Rashid ◽  
S. Chen ◽  
L. E. Collins

Tensile testing on large diameter line pipe is generally done using strap samples obtained in the transverse to pipe axis (TPA) orientation of a pipe. The strap samples are then flattened and machined prior to testing. Although the standardized tensile testing is well documented, the variability in the reported TPA tensile properties of the same material tested within a lab or at different labs has always been an issue. Recent work conducted at EVRAZ NA research lab has identified flattening as the main source of the variability in reported yield strength (YS) values for line pipe. The lack of a standard procedure for flattening TPA strap samples is a major obstacle to obtaining consistent results. Therefore, the main objective of this current study was to establish a standardized flattening procedure for TPA strap samples. Both finite element analysis (FEA) and experimental approaches were adopted. Various flattening methods and fixtures were studied. Extensive flattening experiments were conducted on TPA samples from different line pipe products. Results showed that the spring back after flattening in a TPA sample is different for pipes with different gauge and grades. It was established that consistent flattening can be achieved using appropriate fixtures for differerent ranges of tubular products defined by grade, diameter and gauges. Evaluation of the flattening fixture designs and experimental results are discussed in this paper.


2011 ◽  
Vol 194-196 ◽  
pp. 1977-1981
Author(s):  
Dong Qiang Gao ◽  
Zhi Yun Mao ◽  
Zhong Yan Li ◽  
Fei Zhang

The modal analysis and harmonic response analysis of the machine tool table with periodic truss-core structures are analyzed and calculated by finite element analysis software-ANSYS Workbench, then we get the finite element analysis results. After comparing the results with finite element analysis results of the original machine tool table, we come to the conclusion that the dynamic properties of the machine tool table with periodic truss-core structures are better than the original machine tool table’s. It makes a base for optimized design and remanufacturing.


2019 ◽  
Vol 48 (13) ◽  
pp. 1432-1450 ◽  
Author(s):  
Konstantinos Papadopoulos ◽  
Elizabeth Vintzileou ◽  
Ioannis N. Psycharis

Sign in / Sign up

Export Citation Format

Share Document