Using Thermoplastic (HDPE) Liners and Glass Fiber Reinforced Thermosetting and Thermoplastic Structural Wall Matrices to Produce Filament Wound Pressure Vessels

Author(s):  
Joao F. Silva ◽  
Joao P. Nunes ◽  
Joao C. Velosa

Polymer composites are an excellent alternative to replace more traditional materials in the fabrication of pressure cylinders for common applications. They minimize the weight and improve the mechanical, impact and corrosion behavior, which are relevant characteristics for almost all current and future large scale pressure cylinder applications, such as liquid filters and accumulators, hydrogen cell storage vessels, oxygen bottles, etc. A new generation of composite pressure vessels has been studied in this work. The vessels consist on a thermoplastic liner wrapped with a filament winding glass fiber reinforced polymer matrix structure. A conventional 6-axis CNC controlled filament winding equipment was used to manufacture the thermosetting matrix composite vessels and adapted for production of thermoplastic matrix based composite vessels. The Abaqus 6.4.2 FEM package was used to predict the mechanical behavior of pressure vessels with capacity of approximately of 0.068 m3 (68 liters) for a 0.6 MPa (6 bar) pressure service condition according to the requirements of the EN 13923 standard, namely, the minimum internal burst pressure. The Tsai-Wu and von-Mises criteria were used to predict composite laminate and thermoplastic liner failures, respectively, considering the elasto-plastic behavior of the HDPE liner and the lamina properties deducted from the micromechanical models for composite laminates. Finally, the results obtained from the simulations were compared with those obtained from the experimental pressure tests made on the thermoplastic liners and final composite vessels.

Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7412
Author(s):  
Mohammed Y. Abdellah ◽  
Mohamed K. Hassan ◽  
Ahmed F. Mohamed ◽  
Ahmed H. Backar

In this paper, the mechanical properties of fiber-reinforced epoxy laminates are experimentally tested. The relaxation behavior of carbon and glass fiber composite laminates is investigated at room temperature. In addition, the impact strength under drop-weight loading is measured. The hand lay-up technique is used to fabricate composite laminates with woven 8-ply carbon and glass fiber reinforced epoxy. Tensile tests, cyclic relaxation tests and drop weight impacts are carried out on the carbon and glass fiber-reinforced epoxy laminates. The surface release energy GIC and the related fracture toughness KIC are important characteristic properties and are therefore measured experimentally using a standard test on centre-cracked specimens. The results show that carbon fiber-reinforced epoxy laminates with high tensile strength give high cyclic relaxation performance, better than the specimens with glass fiber composite laminates. This is due to the higher strength and stiffness of carbon fiber-reinforced epoxy with 600 MPa compared to glass fiber-reinforced epoxy with 200 MPa. While glass fibers show better impact behavior than carbon fibers at impact energies between 1.9 and 2.7 J, this is due to the large amount of epoxy resin in the case of glass fiber composite laminates, while the impact behavior is different at impact energies between 2.7 and 3.4 J. The fracture toughness KIC is measured to be 192 and 31 MPa √m and the surface energy GIC is measured to be 540.6 and 31.1 kJ/m2 for carbon and glass fiber-reinforced epoxy laminates, respectively.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1082 ◽  
Author(s):  
Ruoxuan Huang ◽  
Siqi Ma ◽  
Meidi Zhang ◽  
Jie Yang ◽  
Dehong Wang ◽  
...  

The wear evolution of the glass fiber reinforced Polytetrafluoroethylene (PTFE) sliding against duplex steel at elevated temperature was investigated using the interrupted wear tests coupling with the worn surface observations. The morphological changes of the PTFE composite during the sliding were related to the variation of the tribological properties to analyze the underlying wear mechanisms. Results show that the coefficient of friction and wear rate change with the increase of temperature. During the sliding, three regions can be identified regardless of the temperature. The high temperature is beneficial to the formation of tribo-film. The sequence of wear evolution is PTFE removal, load transfer to glass fiber, and minor formation of tribo-film for the low temperature condition. For high temperatures, the wear behaviors are more complicated. The different phenomena include the third body abrasion, flake delamination of PTFE matrix, scratching and reformation of transfer film on the counterface, and the filling of the large scale PTFE groove. These behaviors may dominate the different stages in the stable region, but occur simultaneously and cause the dynamic steady wear. As a result, the wear rate at 200 °C is slightly fluctuant.


2015 ◽  
Vol 727-728 ◽  
pp. 262-265
Author(s):  
Lu Zhang ◽  
Zhen Qing Wang ◽  
Ji Feng Zhang ◽  
Li Min Zhou

A fatal disadvantage of continuously reinforced thermoplastic composites is the high melt viscosity of the matrix which hampers impregnation. However, the melt viscosity of low molecular weight cyclic butylene terephthalate resin can reach extremely low value, which simplifies impregnation and even allows for the use of thermoset production techniques resin transfer moulding. To solve the problem of the glass fiber reinforced poly cyclic butylene terephthalate composites applied in the environment of high temperature, the specimens of composite laminates were tested under and after different temperature. It has been observed that the tensile properties of GF/PCBT composites decrease with increasing temperature between room 25°C and 150°C and tend towards stability after the high temperature.


Sign in / Sign up

Export Citation Format

Share Document