Effect of Pre-Strain on Mechanical Properties of Pressure Vessel Grades: Assessment of Stress Relieving/Post Weld Heat Treatments Efficiency at Regenerating Properties

Author(s):  
Deborah Heritier ◽  
Sylvain Pillot ◽  
Stéphanie Corre ◽  
Cédric Chauvy ◽  
Patrick Toussaint

During fabrication of large pressure vessels, thick plates are submitted to numerous process phases that may affect the initial (i.e. as delivered) properties of the material. Regarding the advantages (both technical and economical) of cold forming process, this technique is largely preferred and widely spread. Modern forming presses and rollers are now sufficiently powerful to roll very thick plates (typically up to 250mm thick) devoted to ultra-heavy pressure equipments. As force does not really constitute a limitation anymore, current limitations are now focusing on maximum admissible strain in materials. This particular limit is linked to: - Intrinsic maximum deformation admissible by the material (given by tensile tests), - Regulation rules coming from construction codes. From a practical point of view, the actual limitation comes from the construction codes that are very severe. Main codes (ASME Boilers and Pressure Vessels Construction Code from American side and EN 13445 Unfired Pressure Vessels Construction Code from European side) both give a limit equal to 5% strain for using material in “as-strained” condition without any heat treatment. Above this limit, the philosophy differs from one code to another. While European Code requires a full quality treatment of the strained material (Normalisation or Austenitization / Tempering), American code only requires Tempering, allowing fabricators the possibility of using the mandatory Post Weld Heat Treatment (PWHT) (needed by welded zones) as a tempering treatment to improve welded zone toughness and to regenerate material properties. The purpose of this contribution is to review the effect of pre-strain on mechanical properties (Hardness, Tensile and Toughness transition curves) for different strain levels and to evaluate the ability of typical PWHT to regenerate material properties. Results presented in this paper are based on both recent studies on the most common up-to-date materials as well as on historical data collected in the last decades. This study clearly demonstrates that the required PWHT is efficient enough to regenerate all material properties and that there is no need to apply a full quality heat treatment, even for the highest level of strain. This benefits both the fabricator and the end user as it implies reducing costs and risks of components deformation while maintaining the necessary level of service properties.

Author(s):  
Sylvain Pillot ◽  
Carole Baudin ◽  
Stéphanie Corre ◽  
Deborah Heritier ◽  
Cédric Chauvy ◽  
...  

Ensuring mechanical properties of carbon and low alloy steels after deformation is of major concern since the building process of heavy (i.e. thick-walled) pressure vessels may be directly impacted. Indeed, thick plates encounter forming and welding operations that may modify as-delivered properties. From both technical and economical points of view, cold forming is usually preferred. This technique is nowadays widespread and new rolling equipments display sufficient power to handle plates up to at least 250mm thick. Current limitations are now mainly related to maximum admissible strain in materials and regulation rules resulting from construction codes. The ASME Boilers and Pressure Vessels Construction Code on the American side and the EN 13445 Unfired Pressure Vessels Construction Code on the European side, both allow the use of as-strained material up to maximum 5% plastic (i.e. permanent) strain without any subsequent heat treatment operation. Above 5% plastic deformation, on one hand the European code requires a full quality treatment (meaning high temperature austenitization treatment, then cooling in air (normalizing – N) or in accelerated conditions (quenching – Q or accelerated cooling – NAC), followed by a Tempering treatment T) and on the other hand the ASME code only requires Tempering that can even be carried out using the mandatory Post Weld Heat Treatment (PWHT) needed by welded zones. However, it is of high importance to note that thick vessels are always submitted to a final PWHT to insure sufficient toughness in welded zones. This final PWHT is performed whatever the deformation obtained during plate rolling. In practice, there are no thick vessels made out of plates in as-strained conditions. Avoiding a full quality treatment as demanded per EN 13445 rules is of major interest for fabricators as it allows to decrease the delivery time, the risk of appearance of problematic issues (uncontrolled deformations of the vessel during high temperature treatments…) and significantly reduces the overall fabrication costs. This paper focuses on the effect of strain on conventional mechanical properties for steel grades widely used for the fabrication of heavy pressure equipments (i.e. tensile properties, hardness, Charpy V toughness) for different strain levels. In particular, it points out and discusses PWHT effects on properties of various pre-strained materials, showing that there is no need for full quality heat treatment.


Author(s):  
Jong-hyoung Kim ◽  
Jun Sang Lee ◽  
Sungki Choi ◽  
Jong-sung Kim ◽  
Dongil Kwon

Generally, post-weld heat treatment is applied to decrease welding residual stress and improve the mechanical properties and microstructure of weldment, and its performance has been recommended for many years [1, 2]. However, current steel-making technology has improved significantly and, steel toughness levels have generally improved substantially [1]. Additionally for several quenched and tempered steels, it is reported that in some cases, mechanical properties such as tensile strength and impact toughness are degraded after post-weld heat treatment [3]. In addition, for large steel assemblies, post-weld heat treatment can be expensive, so that there is an economic incentive to avoid post-weld heat treatment [2]. The research presented here suggests a way to exempt post-weld heat treatment for SA-508 Grade 1A material, which is used for pressure vessels in nuclear power plants, by considering both mechanical properties and residual stress to simplify the welding procedure. Weldments made of 120 mm thick SA-508 Grade 1A should be post-weld heat treated, according to current ASME BPV Code. In order to increase the PWHT exemption thickness to 120 mm, we performed mechanical tests using welding coupons without PWHT; the test results satisfied current mechanical property criteria. We present a residual stress acceptance criterion based on brittle fracture criteria in this research.


Author(s):  
Hannah Schönmaier ◽  
Christian Fleißner-Rieger ◽  
Ronny Krein ◽  
Martin Schmitz-Niederau ◽  
Ronald Schnitzer

AbstractCreep resistant low-alloyed 2.25Cr-1Mo-0.25V steel is typically applied in hydrogen bearing heavy wall pressure vessels in the chemical and petrochemical industry. For this purpose, the steel is often joined via submerged-arc welding. In order to increase the reactors efficiency via higher operating temperatures and pressures, the industry demands for improved strength and toughness of the steel plates and weldments at elevated temperatures. This study investigates the influence of the post weld heat treatment (PWHT) on the microstructure and mechanical properties of 2.25Cr-1Mo-0.25V multi-layer weld metal aiming to describe the underlying microstructure-property relationships. Apart from tensile, Charpy impact and stress rupture testing, micro-hardness mappings were performed and changes in the dislocation structure as well as alterations of the MX carbonitrides were analysed by means of high resolution methods. A longer PWHT-time was found to decrease the stress rupture time of the weld metal and increase the impact energy at the same time. In addition, a longer duration of PWHT causes a reduction of strength and an increase of the weld metals ductility. Though the overall hardness of the weld metal is decreased with longer duration of PWHT, PWHT-times of more than 12 h lead to an enhanced temper resistance of the heat-affected zones (HAZs) in-between the weld beads of the multi-layer weld metal. This is linked to several influencing factors such as reaustenitization and stress relief in the course of multi-layer welding, a higher fraction of larger carbides and a smaller grain size in the HAZs within the multi-layer weld metal.


2021 ◽  
pp. 111257
Author(s):  
Theano N. Examilioti ◽  
Nikolai Kashaev ◽  
Volker Ventzke ◽  
Benjamin Klusemann ◽  
Nikolaos D. Alexopoulos

2012 ◽  
Vol 532-533 ◽  
pp. 234-237
Author(s):  
Wei Lai Chen ◽  
Ding Hong Yi ◽  
Jian Fu Zhang

The purpose of this paper is to study the effect of high temperature in injection molding process on mechanical properties of the warp-knitted and nonwoven composite fabrics (WNC)used in car interior. Tensile, tearing and peeling properties of WNC fabrics were tested after heat treatment under120, 140,160,180°C respectively. It was found that, after 140°C heat treatment, the breaking and tearing value of these WNC fabrics are lower than others. The results of this study show that this phenomenon is due to the material properties of fabrics. These high temperatures have no much effect on peeling properties of these WNC fabrics. It is concluded that in order to preserve the mechanical properties of these WNC fabrics, the temperature near 140°C should be avoided possibly during injection molding process.


2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


Sign in / Sign up

Export Citation Format

Share Document