Towards the Development of Filament Wound Composite Structures Submitted to Very High Internal Pressure, Based on Complex Geometry Shapes

Author(s):  
Erik Vargas Rojas ◽  
David Chapelle ◽  
Dominique Perreux

Industrial applications, especially composite structures bearing high internal pressure, and fabricated using the filament winding process face certain difficulties like the reinforcement of complex shapes, as well as the correct placement of fibers over the surface of a mandrel. In some cases the definition of the manufacturing parameters respond more to cost or time criteria rather than engineering standards, reducing largely the advantages of the said manufacturing process. In order to overcome these obstacles, this research aims to propose a solution that permits to fabricate complex shapes with the desired winding angles at a certain region of complex-shaped mandrels. A numerical tool that simulates the placement of fiber tows over the surface of complex geometries is developed and validated by means of the fabrication of convex and concave composite structures using detachable mandrels. Previous results show that it is feasible to wind complex geometries with good accuracy.

2020 ◽  
Vol 54 (19) ◽  
pp. 2651-2659 ◽  
Author(s):  
Cristiano B Azevedo ◽  
José Humberto S Almeida Jr ◽  
Heitor F Flores ◽  
Frederico Eggers ◽  
Sandro C Amico

The mechanical response of composite structures may be affected by harsh environments, particularly when the matrix has a major contribution, e.g. with off-axis plies. This study aims at investigating the influence of the winding pattern on the axial compressive behavior of filament wound composite cylinder under hygrothermal conditioning. Carbon fiber-reinforced epoxy cylinders were manufactured via filament winding with 1/1, 3/1, and 5/1 mosaic winding patterns and submitted to distilled and artificial seawater environmental conditioning. Water uptake for each hygrothermal conditioning was periodically monitored. The winding pattern influenced both compressive strength and stiffness, and the environmental conditioning decreased strength up to ≈10%. The winding pattern with three diamonds around the circumference of the cylinders provides the properties in term of compressive strength and stiffness.


2017 ◽  
Vol 2017 (1) ◽  
pp. 7-14
Author(s):  
Marcelina Bobrowska ◽  
Michał Barcikowski ◽  
Radosław Rybczyński

Abstract This paper explores the effect of tow width on the damage area produced by high velocity impacts on glass fiber/epoxy composite structures made by filament winding. The subject of the research were a four-layered composite tubes that have been designed using matrix method. The method was used to select mosaic patterns with different rest of the winding stroke and number of interlaces, which are places of stress concentration and which affect the strength of the composite. The narrowest (5 mm) and the widest (17 mm) tow width available was chosen. Composite filament-wound structures were subjected to a high velocity impact by a 2.0 g spherical hardened steel impactor propelled to a velocity of 140 ÷ 170 m/s using a gas gun. It was observed that dependence of the damage area on tow width on filament-wound composite tubes is possible.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Rifat Hossain ◽  
Jason P. Carey ◽  
Pierre Mertiny

Axially symmetric fiber-reinforced polymer composite structures, such as pressure vessels and piping, are being widely used in different industrial applications where combined loading conditions may be applied. It is imperative to determine a suitable fiber angle, or a distribution of fiber angles, along the longitudinal direction of the structure in order to achieve best performance in terms of mechanical behavior and strength for structures subjected to combined loadings. To this end, an approach combining netting analysis and Tsai-Wu failure theory was employed as a design tool to assess critical fiber angles at which applied loadings would cause a structure to fail. Together, the proposed netting analysis and failure theory-based approach constitute a simple, expedient, and convenient design process for complex-shaped structures.


1996 ◽  
Author(s):  
J. Wlodarski ◽  
Charles Pergantis ◽  
Thomas Mulkern ◽  
James Kleinmeyer

Author(s):  
Soo-Jeong Park ◽  
Yun-Hae Kim

The failure mechanism of composites dominates the matrix, fiber and interface, and in general, the matrix corresponds to the definitive cause of damage. A filament–wound composite structure involves a notable bridging effect owing to the matrix between the layers, and particle additives are generally adopted to strengthen the matrix. However, particle additives exhibit a low performance when applied to structures, owing to the dispersibility and particle agglomeration. In this study, the strengthening performance of carbon nanotube (CNT)/epoxy interleaves was experimentally verified to facilitate their implementation in the structural design of a filament–wound cylinder structure. The burst pressure, compression, bending and interfacial bonding strength of the cylinder improved by approximately 20%, 161%, 16% and 36%, respectively, and the positioning of CNT/epoxy interleaves was a more notable influencing factor compared to the proportion of CNTs in the entire winding layer. The number of macro voids decreased inside the epoxy modified CNT. The findings demonstrated that the incorporation of CNTs through CNT/epoxy interleaves could facilitate the matrix strengthening and enhance the interfacial bonding.


Sign in / Sign up

Export Citation Format

Share Document