Evaluation of Constraint Effect on Creep Crack Growth by Advanced Creep Modeling and Damage Mechanics

Author(s):  
Simone Dichiaro ◽  
Luca Esposito ◽  
Nicola Bonora

Effects of constraint induced by crack depth and sample geometry on creep crack behavior of high chromium steels was investigated by numerical simulation. An advanced mechanism-based creep model formulation, which accounts for primary and secondary creep stage was used. Here, the transient creep rate is modeled considering the evolution of the internal stress with the activation energy while the steady state creep rate is modelled considering both diffusional and dislocation creep mechanisms. This formulation allows one to predict accurately creep strain accumulation over a wide range of stress and temperature. Model parameters were identified on constant load creep tests and their transferability to the multiaxial state of stress was verified comparing predicted creep life with data obtained on notched bar samples. Continuum damage mechanics was used to predict the occurrence of tertiary creep stage and crack advance. To this purpose, a non-linear damage law, as proposed in Bonora and Esposito [1] was used. The effect of the geometry constrain on creep crack growth was investigated in different sample geometries (C(T), SEN(T), SEN(B), DEN(T) and CCP(T)) for a given crack depth values, and the same biaxiality ratio for SEN(T), SEN(B) and DEN(T). Numerical simulation results were validated by comparison with available experimental data for P91 steels.

Author(s):  
Nicola Bonora ◽  
Luca Esposito ◽  
Simone Dichiaro ◽  
Paolo Folgarait

Safe and accurate methods to predict creep crack growth (CCG) are required in order to assess the reliability of power generation plants components. With advances in finite element (FE) methods, more complex models incorporating damage can be applied in the study of CCG where simple analytical solutions or approximate methods are no longer applicable. The possibility to accurately simulate CCG depends not only on the damage formulation but also on the creep model since stress relaxation, occurring in the near tip region, controls the resulting creep rate and, therefore, crack initiation and growth. In this perspective, primary and tertiary creep regimes, usually neglected in simplified creep models, plays a relevant role and need to be taken into account. In this paper, an advanced multiaxial creep model [1], which incorporates damage effects, has been used to predict CCG in P91 high chromium steel. The model parameters have been determined based on uniaxial and multiaxial (round notched bar) creep data over a wide range of stress and temperature. Successively, the creep crack growth in standard compact tension sample was predicted and compared with available experimental data.


Author(s):  
Masataka Yatomi ◽  
Kamran M. Nikbin

The paper discusses numerically based virtual techniques of creep crack growth predictions in a fracture mechanics component. The material properties used are for 316H stainless steels and the constitutive behaviour of the steel is described by a power law creep model. A damage-based approach is used to predict the crack propagation rate in compact tension (C(T)) specimens and the data are correlated against an independently determined C* parameter. Elastic-plastic-creep analyses are performed using two different crack growth criteria to predict crack extension under plane stress and plane strain conditions. The NSW and NSW-MOD strain exhaustion models are applied to compare to the experimental data and FE predictions. The plane strain crack growth rate predicted from the numerical analysis is found to be less conservative than the plane strain NSW model but more conservative than plane strain NSW-MOD model, for values of C* within the limits of the present creep crack growth testing standards. At higher loads and C* values, the plane strain crack growth rates, predicted using an elastic-plastic-creep material response, approach is considered and compared to the plane strain NSW-MOD model.


2014 ◽  
Vol 2014 (0) ◽  
pp. _GS12-1_-_GS12-3_
Author(s):  
Takahiro FUKUDA ◽  
Haruhisa SHIGEYAMA ◽  
A. Toshimitsu YOKOBORI Jr. ◽  
Ryuji SGIURA

Author(s):  
Chang-Sik Oh ◽  
Nak-Hyun Kim ◽  
Sung-Hwan Min ◽  
Yun-Jae Kim

This paper provides the virtual simulation method for creep crack growth test, based on finite element (FE) analyses with damage mechanics. Creep tests of smooth bars are used to quantify the constants of creep constitutive equation. The reduction of area resulting from creep tests of smooth and notched bar is adopted as a measure of creep ductility under multiaxial stress conditions. The creep ductility exhaustion concept is adopted for calculating creep damage, which is defined as the ratio of creep strain to the multiaxial creep ductility. To simulate crack propagation, fully damaged elements are forced to have nearly zero stresses using user-defined subroutine UHARD in the general-purpose FE code, ABAQUS. The results from 2D or 3D FE analyses are compared with experimental data of creep crack growth. It is shown that the predictions obtained from this new method are in good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document