scholarly journals Supercritical CO2 Heat Exchanger Fouling and its Impact on RCBC Efficiency

Author(s):  
Darryn Fleming ◽  
Kirsten Norman ◽  
Salvador Rodriguez ◽  
James Pasch ◽  
Matthew Carlson ◽  
...  

As supercritical carbon dioxide (sCO2) is emerging as a potential working fluid in power production Brayton cycles, fluid purity within the power cycle loops has become an issue impacting commercialization. Sandia National Laboratories has been evaluating the longevity of sCO2 recompression closed Brayton power cycles to quantify the advantages of sCO2 over other fluids as utilizing sCO2 yields comparatively greater efficiencies. Hydrocarbon plugging has been observed in the small printed circuit heat exchanger channels of our high temperature recuperator, increasing pressure drop across the heat exchanger. As pressure drop is a critical factor in the overall efficiency of sCO2 recompression closed Brayton cycles, in this paper we report on our investigation into heat exchanger efficiency reduction from hydrocarbon plugging induced pressure drop.

Author(s):  
Darryn Fleming ◽  
Alan Kruizenga ◽  
James Pasch ◽  
Tom Conboy ◽  
Matt Carlson

Supercritical Carbon Dioxide (S-CO2) is emerging as a potential working fluid in power-production Brayton cycles. As a result, concerns have been raised regarding fluid purity within the power cycle loops. Additionally, investigations into the longevity of the S-CO2 power cycle materials are being conducted to quantify the advantages of using S-CO2 versus other fluids, since S-CO2 promises substantially higher efficiencies. One potential issue with S-CO2 systems is intergranular corrosion [1]. At this time, Sandia National Laboratories (SNL) is establishing a materials baseline through the analysis of 1) “as received” stainless steel piping, and 2) piping exposed to S-CO2 under typical operating conditions with SNL’s Brayton systems. Results from ongoing investigations are presented. A second issue that SNL has discovered involves substantial erosion in the turbine blade and inlet nozzle. It is believed that this is caused by small particulates that originate from different materials around the loop that are entrained by the S-CO2 to the nozzle, where they impact the inlet nozzle vanes, causing erosion. We believe that, in some way, this is linked to the purity of the S-CO2, the corrosion contaminants, and the metal particulates that are present in the loop and its components.


Author(s):  
Wen Fu ◽  
Xizhen Ma ◽  
Peiyue Li ◽  
Minghui Zhang ◽  
Sheng Li

Printed circuit heat exchangers are considered for use as the intermediate heat exchangers (IHXs) in high temperature gas-cooled reactors (HTGRs), molten salts reactors (MSRs) and other advanced reactors. A printed circuit heat exchanger (PCHE) is a highly integrated plate-type compact heat exchanger with high-temperature, high-pressure applications and high compactness. A PCHE is built based on the technology of chemical etching and diffusion bonding. A PCHE with supercritical carbon dioxide (CO2) as the working fluid was designed in this study based on the theory correlations. Three-dimensional numerical analysis was then conducted to investigate the heat transfer and pressure drop characteristics of supercritical CO2 in the designed printed circuit heat exchanger using commercial CFD code, FLUENT. The distributions of temperature and velocity through the channel were modeled. The influences of Reynolds number on heat transfer and pressure drop were analyzed. The numerical results agree well with the theory calculations.


2016 ◽  
Vol 109 ◽  
pp. 861-870 ◽  
Author(s):  
Ajinkya Meshram ◽  
Ankush Kumar Jaiswal ◽  
Sagar D. Khivsara ◽  
Jesus D. Ortega ◽  
Clifford Ho ◽  
...  

Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Roma Fatima ◽  
Michael Corradini ◽  
Aaron Towne ◽  
...  

The increasing importance of improving efficiency and reducing capital costs has led to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators has been a noteworthy improvement in the design of advanced carbon dioxide Brayton cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermophysical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16 mm and a length of 0.5 m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion-bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the computational fluid dynamics (CFD) package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The CFD results show excellent agreement in total heat removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.


Author(s):  
Jiaxi Xia ◽  
Jiangfeng Wang ◽  
Pan Zhao ◽  
Dai Yiping

CO2 in a transcritical CO2 cycle can not easily be condensed due to its low critical temperature (304.15K). In order to increase the critical temperature of working fluid, an effective method is to blend CO2 with other refrigerants to achieve a higher critical temperature. In this study, a transcritical power cycle using CO2-based mixtures which blend CO2 with other refrigerants as working fluids is investigated under heat source. Mathematical models are established to simulate the transcritical power cycle using different CO2-based mixtures under MATLAB® software environment. A parametric analysis is conducted under steady-state conditions for different CO2-based mixtures. In addition, a parametric optimization is carried out to obtain the optimal design parameters, and the comparisons of the transcritical power cycle using different CO2-based mixtures and pure CO2 are conducted. The results show that a raise in critical temperature can be achieved by using CO2-based mixtures, and CO2-based mixtures with R32 and R22 can also obtain better thermodynamic performance than pure CO2 in transcritical power cycle. What’s more, the condenser area needed by CO2-based mixture is smaller than pure CO2.


Author(s):  
Yongju Jeong ◽  
Seongmin Son ◽  
Seong kuk Cho ◽  
Seungjoon Baik ◽  
Jeong Ik Lee

Abstract Most of the power plants operating nowadays mainly have adopted a steam Rankine cycle or a gas Brayton cycle. To devise a better power conversion cycle, various approaches were taken by researchers and one of the examples is an S-CO2 (supercritical CO2) power cycle. Over the past decades, the S-CO2 power cycle was invented and studied. Eventually the cycle was successful for attracting attentions from a wide range of applications. Basically, an S-CO2 power cycle is a variation of a gas Brayton cycle. In contrast to the fact that an ordinary Brayton cycle operates with a gas phase fluid, the S-CO2 power cycle operates with a supercritical phase fluid, where temperatures and pressures of working fluid are above the critical point. Many advantages of S-CO2 power cycle are rooted from its novel characteristics. Particularly, a compressor in an S-CO2 power cycle operates near the critical point, where the compressibility is greatly reduced. Since the S-CO2 power cycle greatly benefits from the reduced compression work, an S-CO2 compressor prediction under off-design condition has a huge impact on overall cycle performance. When off-design operations of a power cycle are considered, the compressor performance needs to be specified. One of the approaches for a compressor off-design performance evaluation is to use the correction methods based on similitude analysis. However, there are several approaches for deriving the equivalent conditions but none of the approaches has been thoroughly examined for S-CO2 conditions based on data. The purpose of this paper is comparing these correction models to identify the best fitted approach, in order to predict a compressor off-design operation performance more accurately from limited amount of information. Each correction method was applied to two sets of data, SCEIL experiment data and 1D turbomachinery code off-design prediction code generated data, and evaluated in this paper.


Sign in / Sign up

Export Citation Format

Share Document