Applicability of Nonlinear Kinematic Hardening Models to Low Cycle Fatigue Simulation of C(T) Specimen

Author(s):  
Hune-Tae Kim ◽  
Gyo-Geun Youn ◽  
Jong-Min Lee ◽  
Yun-Jae Kim ◽  
Jin-Weon Kim

To perform low cycle fatigue analysis on nuclear structural materials under cyclic loading, cyclic hardening rules should be determined. In this study, the determination of linear and nonlinear kinematic hardening model parameters based on limited material test data is proposed. Chaboche model parameters are determined from hysteresis loops for the purpose of comparison. Simulation of cyclic C(T) test is performed using the hardening models. In cyclic C(T) test, SA508 Gr.1a low alloy steel and SA312 TP316L stainless steel were taken and incremental loading sequence was adopted. In the loading sequence, displacement control was used for loading steps and load control was applied for unloading steps to maintain constant load ratio. A constant displacement increment was applied after each cycle. The simulation results using A&F model and Chaboche model are compared to verify the applicability of A&F model.

Author(s):  
Vasileios Akrivos ◽  
Mike C. Smith

Isothermal uniaxial low cycle fatigue tests have been performed at two different total strain ranges (1.5% and 2.5%) and at different temperatures (20, 200, 400 and 600°C) for Alloy 600 and Inconel 82 materials. The materials hardening behaviour has been fitted using the Lemaitre Chaboche formulations using different fitting strategies. Thermo mechanical tests have been performed using a Gleeble machine on both parent material and weld metal. In these tests thermal cycles were applied to a constrained specimen simulating the welding conditions in both the heat affected zone and a weld bead when subsequent beads are deposited alongside. The tests were modelled using two different FE codes, namely Code_Aster and Abaqus. This allowed the validation of the Lemaitre-Chaboche model parameters when the material is subjected to realistic thermo-mechanical cycles. Simulations were conducted using both annealing and/or viscous recovery features to examine their impact on the predicted response.


2019 ◽  
Vol 9 (12) ◽  
pp. 2578 ◽  
Author(s):  
Navid Moslemi ◽  
Mohsen Gol Zardian ◽  
Amran Ayob ◽  
Norizah Redzuan ◽  
Sehun Rhee

Ratcheting failure of materials and structures subjected to low cycle fatigue in the presence of significant mean stress is of great interest to researchers. In this experimental and numerical study, the response of 316L stainless steel samples was observed in symmetric strain control uniaxial test followed by post-stabilized monotonic test, uniaxial and biaxial ratcheting tests, in order to determine the Chaboche model parameters and to evaluate ratcheting prediction using finite element analysis. The critical elastic limit was initially obtained from incremental uniaxial cyclic tests. The Chaboche parameters were subsequently extracted from experimental hysteresis and post-stabilized monotonic stress plastic-strain curves using two optimization technics, namely, the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The two optimization methods were compared for efficiency, in terms of time and accuracy. The PSO method presented higher efficient results and was subsequently used to derive the parameters from hysteresis and post-stabilized monotonic curves. Different values (by definition) of elastic limit were also used. The Finite Element commercial software ANSYS was utilized with the Chaboche model to predict the uniaxial and biaxial ratcheting behavior of 316L stainless steel pipe. The comparison between experimental and the numerical simulation demonstrates that adopting post-stabilized monotonic curve rather than hysteresis curve and with accurate elastic limit obtained from incremental loading test improves ratcheting prediction significantly.


2019 ◽  
Vol 300 ◽  
pp. 16008 ◽  
Author(s):  
Tero Frondelius ◽  
Sami Holopainen ◽  
Reijo Kouhia ◽  
Niels Saabye Ottosen ◽  
Matti Ristinmaa ◽  
...  

In this work, an extension of a previously developed continuum based high-cycle fatigue model is enhanced to also capture the low-cycle fatigue regime, where significant plastic deformation of the bulk material takes place. Coupling of the LCFand HCF-models is due to the damage evolution equation. The high-cycle part of the model is based on the concepts of a moving endurance surface in the stress space with an associated evolving isotropic damage variable. Damage evolution in the low-cycle part is determined via plastic deformations and endurance function. For the plastic behaviour a non-linear isotropic and kinematic hardening J2-plasticity model is adopted. Within this unified approach, there is no need for heuristic cycle-counting approaches since the model is formulated by means of evolution equations, i.e. incremental relations, and not changes per cycle. Moreover, the model is inherently multiaxial and treats the uniaxial and multiaxial stress histories in the same manner. Calibration of the model parameters is discussed and results from some test cases are shown.


Author(s):  
Nazrul Islam ◽  
Tasnim Hassan

A rate-independent constitutive model is developed incorporating various uniaxial and multiaxial modeling features for improving the simulations of elbow low-cycle fatigue and ratcheting responses. The model development is motivated by the fact that the Chaboche model in ANSYS is unable to simulate the strain ratcheting responses of elbows subjected to internal pressure and opening-closing displacement-controlled cycles. This drawback of the existing model is traced to the isotropic and kinematic hardening modeling features. The isotropic hardening in the Chaboche model can reasonably simulate the material test stress peaks but fails to simulate the hysteresis loop shapes. Incorporation of a strain range dependent modeling feature in evolving the isotropic and kinematic hardening rule parameters improved the simulation of the hysteresis loops both at the material and component levels. The axial and circumferential strain ratcheting simulation of elbow is improved by incorporating a biaxial ratcheting parameter. A modeling feature for nonproportional loading developed by Tanaka is also incorporated in order to simulate the additional cyclic hardening under multiaxial loading. The performance of modified model developed is validated against simulating a broad set of cyclic responses both at the material and component levels. Finally, a numerical technique is developed to simulate the initial and welding residual stresses in elbows, and thereby analytically demonstrate the influence of initial residual stresses on elbow responses.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


2018 ◽  
Vol 165 ◽  
pp. 18002
Author(s):  
Antoni Lara ◽  
Mercè Roca ◽  
Sergi Parareda ◽  
Núria Cuadrado ◽  
Jessica Calvo ◽  
...  

In the last years, car bodies are increasingly made with new advanced high-strength steels, for both lightweighting and safety purposes. Among these new steels, high-manganese or TWIP steels exhibit a promising combination of strength and toughness, arising from the austenitic structure, strengthened by C, and from the twinning induced plasticity effect. Mechanical cutting such as punching or shearing is widely used for the manufacturing of car body components. This method is known to bring about a very clear plastic deformation and therefore causes a significant increase of mechanical stress and micro-hardness in the zone adjacent to the cut edge. To improve the cut edge quality, surface treatments, such as sandblasting, are often used. This surface treatment generates a compressive residual stress layer in the subsurface region. The monotonic tensile properties and deformation mechanisms of these steels have been extensively studied, as well as the effect of grain size and distribution and chemical composition on fatigue behaviour; however, there is not so much documentation about the fatigue performance of these steels cut using different strategies. Thus, the aim of this work is to analyse the fatigue behaviour of a TWIP steel after mechanical cutting with and without sandblasting in Low and High-Cycle Fatigue regimes. The fatigue behaviour has been determined at room temperature with tensile samples tested with a load ratio of 0.1 and load amplitude control to analyse High-Cycle Fatigue behaviour; and a load ratio of -1 and strain amplitude control to determine the Low-Cycle Fatigue behaviour. Samples were cut by shearing with a clearance value of 5%. Afterwards, a part of the cut specimens were manually blasted using glass microspheres of 40 to 95 microns of diameter as abrasive media. The results show a beneficial effect of the sandblasting process in fatigue behaviour in both regimes, load amplitude control (HCF) and strain amplitude control (LCF) tests, when these magnitudes are low, while no significant differences are observed with higher amplitudes. low-cycle fatigue, high-cycle fatigue, mechanical cutting, sandblasting, high manganese steel, TWIP steel


2019 ◽  
Vol 287 ◽  
pp. 02002
Author(s):  
Marina Franulovic ◽  
Kristina Markovic ◽  
Zdravko Herceg

Gears are mechanical components which experience high dynamic loading during their exploitation period. Therefore, their load carrying capacity together with life expectancy are often the main research interest in various studies. The research presented in this paper is focused on the materials response in spur gears tooth root, with the attention given to the repeated overloads during gears operation. In order to simulate low cycle fatigue by using numerical modeling of stress - strain relationship within material, the material model which takes into account isotropic and kinematic hardening is used here. Material response of specimens produced out of steel 42CrMo4 in different loading conditions is used for the calibration of material model, which is then applied to simulate damage initiation and materials stress - strain response in gears tooth root. The results show that materials response to the given loading conditions non-linearly change through the loading cycles.


2018 ◽  
Vol 165 ◽  
pp. 06002
Author(s):  
Golta Khatibi ◽  
Ali Mazloum-Nejadari ◽  
Martin Lederer ◽  
Mitra Delshadmanesh ◽  
Bernhard Czerny

In this study, the influence of microstructure on the cyclic behaviour and lifetime of Cu and Au wires with diameters of 25μm in the low and high cycle fatigue regimes was investigated. Low cycle fatigue (LCF) tests were conducted with a load ratio of 0.1 and a strain rate of ~2e-4. An ultrasonic resonance fatigue testing system working at 20 kHz was used to obtain lifetime curves under symmetrical loading conditions up to very high cycle regime (VHCF). In order to obtain a total fatigue life model covering the low to high cycle regime of the thin wires by considering the effects of mean stress, a four parameter lifetime model is proposed. The effect of testing frequency on high cycle fatigue data of Cu is discussed based on analysis of strain rate dependency of the tensile properties with the help of the material model proposed by Johnson and Cook.


Author(s):  
Masaki Mitsuya ◽  
Hiroshi Yatabe

Buried pipelines may be deformed due to earthquakes and also corrode despite corrosion control measures such as protective coatings and cathodic protection. In such cases, it is necessary to ensure the integrity of the corroded pipelines against earthquakes. This study developed a method to evaluate the earthquake resistance of corroded pipelines subjected to seismic ground motions. Axial cyclic loading experiments were carried out on line pipes subjected to seismic motion to clarify the cyclic deformation behavior until buckling occurs. The test pipes were machined so that each one would have a different degree of local metal loss. As the cyclic loading progressed, displacement shifted to the compression side due to the formation of a bulge. The pipe buckled after several cycles. To evaluate the earthquake resistance of different pipelines, with varying degrees of local metal loss, a finite-element analysis method was developed that simulates the cyclic deformation behavior. A combination of kinematic and isotropic hardening components was used to model the material properties. These components were obtained from small specimen tests that consisted of a monotonic tensile test and a low cycle fatigue test under a specific strain amplitude. This method enabled the successful prediction of the cyclic deformation behavior, including the number of cycles required for the buckling of pipes with varying degrees of metal loss. In addition, the effect of each dimension (depth, longitudinal length and circumferential width) of local metal loss on the cyclic buckling was studied. Furthermore, the kinematic hardening component was investigated for the different materials by the low cycle fatigue tests. The kinematic hardening components could be regarded as the same for all the materials when using this component as the material property for the finite-element analyses simulating the cyclic deformation behavior. This indicates that the cyclic deformation behavior of various line pipes can be evaluated only based on their respective tensile properties and common kinematic hardening component.


Sign in / Sign up

Export Citation Format

Share Document