Validation of the Incremental Step Loading Technique Application to Small Punch Tests in Aggressive Environments in X80 Steel

Author(s):  
B. Arroyo ◽  
L. Andrea ◽  
P. González ◽  
J. A. Álvarez ◽  
S. Cicero ◽  
...  

Abstract The Small punch test, which consists on punching a small plane specimen up to failure, is a technique to be taken into account for the estimation of mechanical properties when there is shortage of material. In recent works it has been applied to the estimation of mechanical properties steels in aggressive environments. In aggressive environments, tests under a constant load are usually employed for the threshold stress determination, but this a slow and sometimes inaccurate technique. The standard ASTM F1624 solves these issues; it consists on applying steps of constant loads subsequently increased up to the specimen’s failure. In a previous work, it was indicated how to implement this technique for Small Punch testing of steels in hydrogen embrittlement scenarios, adapting the steps duration. This proposal allows to obtain a threshold load by using at least 3 specimens in a total time of around a week. In the present work, the incremental step loading technique from ASTM F1624 standard is applied to the Small Punch test in order to estimate tensile threshold stress of a X80 high strength steel in hydrogen embrittlement environments by cathodic polarization in an acid electrolyte. Regular standard tests on cylindrical tensile specimens were carried out following the ASTM F1624 standard, in order to validate the methodology proposed.

Author(s):  
B. Arroyo ◽  
P. González ◽  
L. Andrea ◽  
J. A. Álvarez ◽  
R. Lacalle

Abstract In this work, the incremental step loading technique to measure hydrogen embrittlement threshold in steels from ASTM F1624 standard is applied to the Small Punch test technique. For the experimental program, a medium strength steel is employed, simulating the hydrogen embrittlement environment by a cathodic polarization of 5 mA/cm2 in an acid electrolyte mainly consisting of 1N H2SO4 in H2O. Regular standard tests on cylindrical tensile specimens were carried out under the same environment following the ASTM F1624 standard, observing the same trends in both cases, which validates the methodology proposed. In order to adapt the aforementioned standard to small punch testing, the duration of the loading steps had to be modified, proposing much shorter ones according to the Small Punch specimen dimensions and the punch rate taking place in these scenarios, which is pointed in bibliography. This proposal allows to obtain a threshold load by using at least 3 specimens in a total time of around a week.


Author(s):  
B. Arroyo ◽  
J. A. Álvarez ◽  
R. Lacalle

This work is about evaluating the behavior facing HIC of high strength steels by means of the Small Punch Test (SPT). It can be considered as a quasi-non-destructive test in comparison to structural integrity analysis of large components. It was developed during the 80’s with the purpose of estimating the embrittlement grade of nuclear components reducing the amount of material employed. During the last years it has been successfully employed in the evaluation of mechanical properties of different materials and creep behavior. Also approximations for the fracture properties estimations have been carried out using this method. Although a reference standard that includes the tensile and fracture parameters estimations by SPT does not exist, a European Code of Practice (CWA 15627:2008) was recently developed. In addition a European standard is in preparation, including the ultimate research and the backup of the most relevant groups. In this work, high strength steels behavior facing stress corrosion cracking (SCC) or hydrogen Embrittlement (HE) processes are analyzed by means of the Small Punch Test (SPT). The evaluation of the response of materials facing environmental damage processes requires a different consideration if cracks are present on the material or not. In a first stage the study carried out tries to analyze the behavior without cracks, using the threshold stress (σscc) parameter. The aforementioned parameter is obtained from slow strain rate tensile tests (SSRT), which involves its own particular disadvantages. Thus the aptitude of the SPT to obtain the threshold stress is studied, evaluating the influence of variables such as the solicitation rate. In the second part of the work, specimen geometry and test conditions are proposed for the SPT, in order to evaluate the susceptibility facing SCC and HE in presence of cracks for the materials studied. In this case, the fracture toughness parameter that describes the crack initiation process (Khe) will be evaluated and validated by conventional tests based on fracture mechanics. The influence of variables, such as test solicitation rate on the results, is analyzed in order to obtain a qualitative methodology to evaluate mechanical-environmental damage processes by SPT means. For the SPT tests carried out, common Small Punch specimens of 10×10 mm of section and 0,5 mm of thickness are used for σscc determination.


2015 ◽  
Vol 830-831 ◽  
pp. 191-194
Author(s):  
M. Venkateswara Rao

Conventional tensile test methods are used for service exposed high temperature boiler tubes to evaluate the deterioration in mechanical properties such as tensile strength, yield strength and percentage elongation. The mechanical properties are required to be evaluated periodically as the boiler components undergo material degradation due to aging phenomena. The aging phenomena occurs due to continuous exposure of tubes to high temperature & pressure steam prevailing inside the tubes and high temperature exposure to corrosive combustible gases from the external surfaces within the boiler.A recent developed new technique called small punch testing has been used to evaluate the tensile properties of SA 213T22 grade steel predominantly exists in super-heater and re-heater sections of boiler. The small punch tests have been carried out on the miniature disk shaped specimens of diameter of 8.0 mm and 0.5 mm thickness extracted from both the new and service exposed tubes. Conventional uniaxial tensile tests on standard specimens from the same tube material have also been performed for comparison. The service exposed tubes showed considerable loss in mechanical properties in both the conventional and small punch test results. Correlations of tensile properties have been obtained based on the comparative analysis of both small punch and uniaxial tensile test results. Further, the study showed that an appropriate empirical relation could be generated for new and service exposed materials between both the techniques. Conventional test methods require large quantity of material removal for test samples from in-service components whereas small punch test method needs only a miniature sample extraction. This small punch test technique could also be extended to evaluate the thicker section boiler components such as pipelines and headers in the boiler as a part of remaining life assessment study. Also this technique could be a useful tool to any metallic component where large quantity of sample removal may be difficult or may not be feasible.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1491 ◽  
Author(s):  
Jose Calaf Chica ◽  
Pedro Bravo Díez ◽  
Mónica Preciado Calzada

The load–deflection curve acquired from the Small Punch Test (SPT) is used to obtain the mechanical properties of materials using different correlation methods. The scattering level of these regressions tends to be high when a wide set of materials is analyzed. In this study, a correlation method based on a specific slope of the SPT curve was proposed to reduce scattering. Assuming the Ramberg–Osgood hardening law, the dependence of the SPT curve slope on the yield strength and the hardening coefficient is demonstrated by numerical simulations (FEM). Considering that the ultimate tensile strength could be obtained from the hardening coefficient, a response surface of the ultimate tensile strength with the yield strength and SPT curve slope, along with its equation, is presented for steel alloys. A summary of steel mechanical properties, based on the Boiler and Pressure Vessel Code (BPVC) and limited to yield strengths lower than 1300 MPa, is shown to select a set of experimental tests (tensile tests and SPTs) for which the range is completely covered. This experimental analysis validates the previous FEM analyses and the validity of the proposed correlation method, which shows more accurate correlations compared to the current methods.


2015 ◽  
Vol 750 ◽  
pp. 285-291
Author(s):  
He Hui Wang ◽  
Shao Jie Zhang ◽  
Yao Gang Wang ◽  
Kai Shu Guan

This paper describes an approach to identify the influence of mechanical properties of the materials under the condition of containing residual stress. The numerical method of simulating small punch test (SPT) is used to determine the material response under loading. The simulated material behavior of the specimen is based on the ductile elastoplastic damage theory of Gurson, Tvergaard and Needleman (GTN). The residual stress can be prefabricated on the specimen by loading and unloading. By comparing the original specimen with the specimen contains residual stress, the change of the mechanical properties of the materials can be studied. The results of simulation indicate that the material properties decrease with the increase of the residual stress.


Sign in / Sign up

Export Citation Format

Share Document