Structural Health Monitoring of Electro-Mechanical Actuators in Aviation: Recent Breakthroughs and Further Challenges

2021 ◽  
Author(s):  
Vittorio Memmolo ◽  
Carmine Vaselli ◽  
Nicola Cimminiello ◽  
Pasquale Salvato ◽  
Ernesto Monaco ◽  
...  

Abstract Electrical actuation systems have recently been introduced in aviation pursuing the concepts of More Electric Aircraft. Instead of employing hydraulic pipelines, Electro-Mechanical Actuator (EMA) transfers the power by “wires” with a consequent improvement of the aircraft actuation performance. However, the integration of linear electromechanical actuators is promising yet challenging in safety critical systems. Within this context, this work critically reviews electromechanical actuators currently available for aerospace application, the limits for their upcoming deployment and the different solutions to achieve an on-condition maintenance to reduce any safety risk during lifetime. First of all, the typical conversion mechanism adopted so far are briefly described with emphasis on the most suited for aerospace applications. A further insight is given to failure modes of these systems, which dramatically contrast the countless inherent advantages thereof. A particular attention is given to the jamming of the driven load, which is a critical mechanical transmission failure in many applications such as primary flight controls or landing gears extension and steering. Finally, the focus is moved to possible strategies to avoid any hazard induced by this failure. In particular, any structural alteration which is prone to induce jamming can be monitored towards the establishment of a predictive maintenance. Different possibilities are available in the way to timely assess the bearing of inner EMA surfaces where screwing is enabled.

Author(s):  
Guan Qiao ◽  
Geng Liu ◽  
Zhenghong Shi ◽  
Yawen Wang ◽  
Shangjun Ma ◽  
...  

Conventional hydraulic actuators in aircraft systems are high maintenance and more vulnerable to high temperatures and pressures. This usually leads to high operating costs and low efficiency. With the rapid development of More/All Electric technology, power-by-wire actuators are being broadly employed to improve the maintainability, reliability, and manoeuvrability of future aircraft. This paper reviews the published application and development of the airborne linear electromechanical actuator. First, the general configuration, merits, and limitations of the gear-drive electromechanical actuator and the direct-drive electromechanical actuator are analysed. Second, the development state of the electromechanical actuator testing systems is elaborated in three aspects, namely the performance testing based on room temperature, testing in a thermal vacuum environment, and iron bird. Common problems and tendencies of the testing systems are summarized. Key technologies and research challenges are revealed in terms of fault-tolerant motor, high-thrust mechanical transmission, multidisciplinary modelling, thermal management, and thermal analysis. Finally, the trend for future electromechanical actuators in More/All Electric Aircraft applications is summarized, and future research on the airborne linear electromechanical actuators is discussed.


2020 ◽  
Vol 10 (21) ◽  
pp. 7809
Author(s):  
Pablo Garza ◽  
Suresh Perinpanayagam ◽  
Sohaib Aslam ◽  
Andrew Wileman

An efficient and all-inclusive health management encompassing condition-based maintenance (CBM) environment plays a pivotal role in enhancing the useful life of mission-critical systems. Leveraging high fidelity digital modelling and simulation, scalable to digital twin (DT) representation, quadruples their performance prediction and health management regime. The work presented in this paper does exactly the same for an electric braking system (EBS) of a more-electric aircraft (MEA) by developing a highly representative digital model of its electro-mechanical actuator (EMA) and integrating it with the digital model of anti-skid braking system (ABS). We have shown how, when supported with more-realistic simulation and the application of a qualitative validation approach, various fault modes (such as open circuit, circuit intermittence, and jamming) are implemented in an EMA digital model, followed by their impact assessment. Substantial performance degradation of an electric braking system is observed along with associated hazards as different fault mode scenarios are introduced into the model. With the subsequent qualitative validation of an EMA digital model, a complete performance as well as reliability profile of an EMA can be built to enable its wider deployment and safe integration with a larger number of aircraft systems to achieve environmentally friendly objectives of the aircraft industry. Most significantly, the qualitative validation provides an efficient method of identifying various fault modes in an EMA through rapid monitoring of associated sensor signals and their comparative analysis. It is envisaged that when applied as an add-on in digital twin environment, it would help enhance its CBM capability and improve the overall health management regime of electric braking systems in more-electric aircraft.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 140
Author(s):  
Tran Vy Khanh Vo ◽  
Tomasz Marek Lubecki ◽  
Wai Tuck Chow ◽  
Amit Gupta ◽  
King Ho Holden Li

A new approach in the development of aircraft and aerospace industry is geared toward increasing use of electric systems. An electromechanical (EM) piezoelectric-based system is one of the potential technologies that can produce a compactable system with a fast response and a high power density. However, piezoelectric materials generate a small strain, of around 0.1–0.2% of the original actuator length, limiting their potential in large-scale applications. This paper reviews the potential amplification mechanisms for piezoelectric-based systems targeting aerospace applications. The concepts, structural designs, and operation conditions of each method are summarized and compared. This review aims to provide a good understanding of piezoelectric-based systems toward selecting suitable designs for potential aerospace applications and an outlook for novel designs in the near future.


2012 ◽  
Vol 430-432 ◽  
pp. 1559-1563 ◽  
Author(s):  
Li Ming Yu ◽  
Zi Qing Ye

Hybrid actuation system (HAS) with dissimilar redundancies conforms to the development trend of future actuation systems in more electric aircraft (MEA). Hybrid Actuation system is composed of a traditional servo valve controlled hydraulic actuator (SHA) and an electro-hydraulic actuator (EHA). It has two operating models, active/passive mode (A/P) and active/active mode (A/A). In A/A model both actuators are actively controlled. Corresponding to A/A model, SHA is actively controlled and EHA is passively controlled in A/P model. The hybrid actuation system is built in the AMESim simulation environment, comparative analysis is performed when system operates in these two modes, such as signal response and force fighting. The simulation results provide a guideline to determine the specific operating mode of the system in different circumstances.


Sign in / Sign up

Export Citation Format

Share Document