On the Indentation Testing of Articular Cartilage: Determination of the Effective Poisson’s Ratio Using Two Different-Sized Punches

Author(s):  
Eugene T. Kepich ◽  
Roger C. Haut

Effective Poisson’s ratio (EPR) of articular cartilage in compression is an important parameter, which is inversely correlated with stiffness of the collagen fibers [1]; and thus, if known, could provide valuable information about integrity of the collagen network in the tissue. Unfortunately, direct determination of the EPR by measuring lateral expansion during unconfined compression tests [2], while being effective, due to it’s destructive nature many times is not desired and/or hard to apply in practice. Optically-determined values of equilibrium EPR for bovine humeral articular cartilage using this method are reported to be in range 0.185±0.0065.

Author(s):  
J S Jurvelin ◽  
M D Buschmann ◽  
E B Hunziker

Articular cartilage exhibits anisotropic mechanical properties when subjected to tension. However, mechanical anisotropy of mature cartilage in compression is poorly known. In this study, both confined and unconfined compression tests of cylindrical cartilage discs, taken from the adult human patello-femoral groove and cut either perpendicular (normal disc) or parallel (tangential disc) to the articular surface, were utilized to determine possible anisotropy in Young's modulus, E, aggregate modulus, Ha, Poisson's ratio, v and hydraulic permeability, k, of articular cartilage. The results indicated that Ha was significantly higher in the direction parallel to the articular surface as compared with the direction perpendicular to the surface ( Ha = 1.237 ± 0.486 MPa versus Ha = 0.845 ± 0.383 MPa, p = 0.017, n = 10). The values of Poisson's ratio were similar, 0.158 ± 0.148 for normal discs compared with 0.180 ± 0.046 for tangential discs. Analysis using the linear biphasic model revealed that the decrease of permeability during the offset compression of 0–20 per cent was higher ( p = 0.015, n = 10) in normal (from 25.5 × 10− 15 to 1.8 × 10−15 m4/N s) than in tangential (from 12.3 × 10− 15 to 1.3 × 10− 15 m4/N s) discs. Based on the results, it is concluded that the mechanical characteristics of adult femoral groove articular cartilage are anisotropic also during compression. Anisotropy during compression may be essential for normal cartilage function. This property has to be considered when developing advanced theoretical models for cartilage biomechanics.


1998 ◽  
Vol 120 (3) ◽  
pp. 362-369 ◽  
Author(s):  
A. A. J. Goldsmith ◽  
S. E. Clift

A hydrogel with potential applications in the role of a cushion form replacement joint bearing surface material has been investigated. The material properties are required for further development and design studies and have not previously been quantified. Creep indentation experiments were therefore performed on samples of the hydrogel. The biphasic model developed by Mow and co-workers (Mak et al., 1987; Mow et al., 1989a) was used to curve-fit the experimental data to theoretical solutions in order to extract the three intrinsic biphasic material properties of the hydrogel (aggregate modulus, HA, Poisson’s ratio, νs, and permeability, k). Ranges of material properties were determined: aggregate modulus was calculated to be between 18.4 and 27.5 MPa, Poisson’s ratio 0.0–0.307, and permeability 0.012–7.27 × 10−17 m4/Ns. The hydrogel thus had a higher aggregate modulus than values published for natural normal articular cartilage, the Poisson’s ratios were similar to articular cartilage, and finally the hydrogel was found to be less permeable than articular cartilage. The determination of these values will facilitate further numerical analysis of the stress distribution in a cushion form replacement joint.


2004 ◽  
Vol 126 (2) ◽  
pp. 138-145 ◽  
Author(s):  
Hui Jin ◽  
Jack L. Lewis

Articular cartilage is often characterized as an isotropic elastic material with no interstitial fluid flow during instantaneous and equilibrium conditions, and indentation testing commonly used to deduce material properties of Young’s modulus and Poisson’s ratio. Since only one elastic parameter can be deduced from a single indentation test, some other test method is often used to allow separate measurement of both parameters. In this study, a new method is introduced by which the two material parameters can be obtained using indentation tests alone, without requiring a secondary different type of test. This feature makes the method more suitable for testing small samples in situ. The method takes advantages of the finite layer effect. By indenting the sample twice with different-sized indenters, a nonlinear equation with the Poisson’s ratio as the only unknown can be formed and Poisson’s ratio obtained by solving the nonlinear equation. The method was validated by comparing the predicted Poisson’s ratio for urethane rubber with the manufacturer’s supplied value, and comparing the predicted Young’s modulus for urethane rubber and an elastic foam material with modulii measured by unconfined compression. Anisotropic and nonhomogeneous finite-element (FE) models of the indentation were developed to aid in data interpretation. Applying the method to bovine patellar cartilage, the tissue’s Young’s modulus was found to be 1.79±0.59MPa in instantaneous response and 0.45±0.26MPa in equilibrium, and the Poisson’s ratio 0.503±0.028 and 0.463±0.073 in instantaneous and equilibrium, respectively. The equilibrium Poisson’s ratio obtained in our work was substantially higher than those derived from biphasic indentation theory and those optically measured in an unconfined compression test. The finite element model results and examination of viscoelastic-biphasic models suggest this could be due to viscoelastic, inhomogeneity, and anisotropy effects.


2004 ◽  
Vol 126 (1) ◽  
pp. 6-16 ◽  
Author(s):  
D. D. Sun ◽  
X. E. Guo ◽  
M. Likhitpanichkul ◽  
W. M. Lai ◽  
V. C. Mow

Unconfined compression test has been frequently used to study the mechanical behaviors of articular cartilage, both theoretically and experimentally. It has also been used in explant and gel-cell-complex studies in tissue engineering. In biphasic and poroelastic theories, the effect of charges fixed on the proteoglycan macromolecules in articular cartilage is embodied in the apparent compressive Young’s modulus and the apparent Poisson’s ratio of the tissue, and the fluid pressure is considered to be the portion above the osmotic pressure. In order to understand how proteoglycan fixed charges might affect the mechanical behaviors of articular cartilage, and in order to predict the osmotic pressure and electric fields inside the tissue in this experimental configuration, it is necessary to use a model that explicitly takes into account the charged nature of the tissue and the flow of ions within its porous interstices. In this paper, we used a finite element model based on the triphasic theory to study how fixed charges in the porous-permeable soft tissue can modulate its mechanical and electrochemical responses under a step displacement in unconfined compression. The results from finite element calculations showed that: 1) A charged tissue always supports a larger load than an uncharged tissue of the same intrinsic elastic moduli. 2) The apparent Young’s modulus (the ratio of the equilibrium axial stress to the axial strain) is always greater than the intrinsic Young’s modulus of an uncharged tissue. 3) The apparent Poisson’s ratio (the negative ratio of the lateral strain to the axial strain) is always larger than the intrinsic Poisson’s ratio of an uncharged tissue. 4) Load support derives from three sources: intrinsic matrix stiffness, hydraulic pressure and osmotic pressure. Under the unconfined compression, the Donnan osmotic pressure can constitute between 13%–22% of the total load support at equilibrium. 5) During the stress-relaxation process following the initial instant of loading, the diffusion potential (due to the gradient of the fixed charge density and the associated gradient of ion concentrations) and the streaming potential (due to fluid convection) compete against each other. Within the physiological range of material parameters, the polarity of the electric potential depends on both the mechanical properties and the fixed charge density (FCD) of the tissue. For softer tissues, the diffusion effects dominate the electromechanical response, while for stiffer tissues, the streaming potential dominates this response. 6) Fixed charges do not affect the instantaneous strain field relative to the initial equilibrium state. However, there is a sudden increase in the fluid pressure above the initial equilibrium osmotic pressure. These new findings are relevant and necessary for the understanding of cartilage mechanics, cartilage biosynthesis, electromechanical signal transduction by chondrocytes, and tissue engineering.


2011 ◽  
Vol 31 (3) ◽  
pp. 427-437 ◽  
Author(s):  
Raquel Gonçalves ◽  
Milton Giacon Júnior ◽  
Igor M. Lopes

The determination of the modulus tangent (Eci ) and of the modulus secant (Ecs) of the concrete can be done using compression test but, to be simpler, it is used relations with characteristic strength (f ck). Relations are also used to determine the transversal modulus (Gc) and, in the case of the Poisson's ratio (ν), a fixed value 0.20 is established. The objective of this research was to evaluate the use of the ultrasonic propagation waves to determine these properties. For the tests were used specimens with f ck varying from 10 to 35 MPa. For the ultrasonic tests were used cylindrical and cubic specimens. The modulus of deformation obtained by ultrasound was statistically equivalent to the obtained by compression tests. The results of modules obtained using the relations with f ck was far away from those obtained by ultrasound or by compression tests. The Poisson's ratio obtained by ultrasound was superior to the fixed value. We can conclude that the concrete characterization by ultrasound is consistent and, to this characterization the cylindrical specimen, normally used to determine f ck, can be used.


2015 ◽  
Vol 668 ◽  
pp. 126-133 ◽  
Author(s):  
Caori Patricia Takeuchi ◽  
Martin Estrada ◽  
Dorian Luis Linero

Laminated bamboo is a natural composite material with cellulose fibers, parenchyma cells, and vascular bundles. The mechanical characterization of this material includes not only the determination of its strength, but also of its elastic constants. Given the anisotropic nature of the laminated material, compression tests were performed on three groups of specimens. The elastic modulus in the load direction and the Poisson's ratio were determined, and the results showed that the material's physical anisotropy causes an anisotropic mechanical behavior. The average values obtained for the elastic modulus ranged from 30044 MPa for group 1 to 265 MPa for group 2. The results of the test to determine the Poisson's ratio in compression perpendicular to the fibers, ranged from 0.013 to 0.278 whereas those obtained in compression parallel to the fibers, ranged from 0.621 to 1.506.


Sign in / Sign up

Export Citation Format

Share Document