The Elastic Modulus and Poisson's Ratio of Laminated Bamboo Guadua angustifolia

2015 ◽  
Vol 668 ◽  
pp. 126-133 ◽  
Author(s):  
Caori Patricia Takeuchi ◽  
Martin Estrada ◽  
Dorian Luis Linero

Laminated bamboo is a natural composite material with cellulose fibers, parenchyma cells, and vascular bundles. The mechanical characterization of this material includes not only the determination of its strength, but also of its elastic constants. Given the anisotropic nature of the laminated material, compression tests were performed on three groups of specimens. The elastic modulus in the load direction and the Poisson's ratio were determined, and the results showed that the material's physical anisotropy causes an anisotropic mechanical behavior. The average values obtained for the elastic modulus ranged from 30044 MPa for group 1 to 265 MPa for group 2. The results of the test to determine the Poisson's ratio in compression perpendicular to the fibers, ranged from 0.013 to 0.278 whereas those obtained in compression parallel to the fibers, ranged from 0.621 to 1.506.

Author(s):  
Uday Chippada ◽  
Xue Jiang ◽  
Lulu Li ◽  
Rene Schloss ◽  
Bernard Yurke ◽  
...  

Hydrogels have been used as substrates by many researchers in the study of cellular processes. The mechanical properties of these gels play a significant role in the growth of the cells. Significant research using several methods like compression, indentation, atomic force microscopy and manipulation of beads has been performed in the past to characterize the stiffness of these substrates. However, most of the methods employed assume the gel to be incompressible, with a Poisson’s ratio of 0.5. However, Poisson’s ratio can differ from 0.5. Hence, a more complete characterization of the elastic properties of hydrogels requires that one experimentally obtain the value of at least two of the three quantities: Poisson’s ratio, shear modulus, and elastic modulus.


2017 ◽  
Vol 6 (6) ◽  
pp. 292 ◽  
Author(s):  
Moro Olivier Boffoue ◽  
Brahiman Traore ◽  
Conand Honoré Kouakou ◽  
Kokou Esso Atcholi ◽  
Remy Lachat ◽  
...  

Author(s):  
Eugene T. Kepich ◽  
Roger C. Haut

Effective Poisson’s ratio (EPR) of articular cartilage in compression is an important parameter, which is inversely correlated with stiffness of the collagen fibers [1]; and thus, if known, could provide valuable information about integrity of the collagen network in the tissue. Unfortunately, direct determination of the EPR by measuring lateral expansion during unconfined compression tests [2], while being effective, due to it’s destructive nature many times is not desired and/or hard to apply in practice. Optically-determined values of equilibrium EPR for bovine humeral articular cartilage using this method are reported to be in range 0.185±0.0065.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mingxing Gao ◽  
Yongli Liu

Water injection in coal seams will lead to the increase of moisture content in coal, which plays an essential role in the physical and mechanical properties of coal. In order to study the influence of moisture content on the mechanical properties of soft media, the forming pressure (20 MPa) and particle size ratio (0-1 mm (50%), 1-2 mm (25%), and 2-3 mm (25%)) during briquette preparation were firstly determined in this paper. Briquettes with different moisture contents (3%, 6%, 9%, 12%, and 15%) were prepared by using self-developed briquettes. Uniaxial and triaxial compression tests were carried out using the RMT-150C rock mechanics test system. The results show that the uniaxial compressive strength and elastic modulus of briquette samples increase first and then decrease with the increase of briquette water, while Poisson’s ratio decreases first and then increases with the increase of briquette water. When the moisture content is around 9%, the maximum uniaxial compressive strength is 0.866 MPa, the maximum elastic modulus is 1.385 GPa, and Poisson’s ratio is at the minimum of 0.259. The compressive strength of briquettes increases with the increase of confining pressure. With the increase of moisture content, the cohesion and internal friction angle of briquettes first increased and then decreased.


1999 ◽  
Vol 341 (1-2) ◽  
pp. 207-210 ◽  
Author(s):  
Sung-Jin Cho ◽  
Kwang-Ryeol Lee ◽  
Kwang Yong Eun ◽  
Jun Hee Hahn ◽  
Dae-Hong Ko

2011 ◽  
Vol 31 (3) ◽  
pp. 427-437 ◽  
Author(s):  
Raquel Gonçalves ◽  
Milton Giacon Júnior ◽  
Igor M. Lopes

The determination of the modulus tangent (Eci ) and of the modulus secant (Ecs) of the concrete can be done using compression test but, to be simpler, it is used relations with characteristic strength (f ck). Relations are also used to determine the transversal modulus (Gc) and, in the case of the Poisson's ratio (ν), a fixed value 0.20 is established. The objective of this research was to evaluate the use of the ultrasonic propagation waves to determine these properties. For the tests were used specimens with f ck varying from 10 to 35 MPa. For the ultrasonic tests were used cylindrical and cubic specimens. The modulus of deformation obtained by ultrasound was statistically equivalent to the obtained by compression tests. The results of modules obtained using the relations with f ck was far away from those obtained by ultrasound or by compression tests. The Poisson's ratio obtained by ultrasound was superior to the fixed value. We can conclude that the concrete characterization by ultrasound is consistent and, to this characterization the cylindrical specimen, normally used to determine f ck, can be used.


Sign in / Sign up

Export Citation Format

Share Document