Effect of Stent Design Parameters on Coronary Artery Flow

Author(s):  
Satyaprakash Karri ◽  
Stephen Peter ◽  
Pavlos P. Vlachos

The most widely accepted modality for treating diseased arteries is the implantation of endovascular stents. Stents are metallic wireframe devices used to reopen clogged arteries. Despite their widespread use, problems persist post-implantation of these devices beginning with sub-acute thrombus formation followed by inflammation, proliferation and remodeling [1]. The specific stent design and its design parameters profoundly impact the hemodynamic environment of the stent [2], in turn affecting thrombus accumulation between struts and thus restenosis [3]. Prior research examining the hemodynamic effects of stents has been performed in simplified geometries [4] however the effects of stent design parameters such as strut thickness and crown radius of curvature or analysis in realistic geometries is generally lacking. A more thorough understanding of the effect of a stent’s geometric parameters on the arterial flow will provide insight into their long-term performance and will lead to better design.

2020 ◽  
Vol 10 (12) ◽  
pp. 4330
Author(s):  
Hyunjun Jung ◽  
Seok-Been Im ◽  
Yun-Kyu An

This study proposes a probability-based carbonation prediction approach for successful monitoring of deteriorating concrete structures. Over the last several decades, a number of researchers have studied the concrete carbonation prediction to estimate the long-term performance of carbonated concrete structures. Recently, probability-based durability analyses have been introduced to precisely estimate the carbonation of concrete structures. Since the carbonation of concrete structures, however, can be affected by material compositions as well as various environmental conditions, it is still a challenge to predict concrete carbonation in the field. In this study, the Fick’s first law and a Bayes’ theorem-based carbonation prediction approach is newly proposed using on-site data, which were obtained over 19 years. In particular, the effects of design parameters such as diffusion coefficient, concentration, absorption quantity of CO2, and the degree of hydration have been thoroughly considered in this study. The proposed probabilistic approach has shown a reliable prediction of concrete carbonation and remaining service life.


Author(s):  
Vishwa V. Beesam ◽  
Cristina Torres-Machi

Cold recycling technologies such as full-depth reclamation (FDR) are sustainable and cost-effective techniques for pavement rehabilitation that reduce environmental impacts and construction costs and time. The limited information available on the material properties of FDR mixtures and their characterization in mechanistic-empirical (M-E) pavement design hinders the full deployment of FDR. Previous research has found current M-E default values to be non-representative and overly conservative, leading to an underestimation of the true performance capabilities of FDR materials. To address this gap, this paper analyzes the performance of 11 FDR sites constructed throughout Colorado, U.S., and compares their long-term performance with M-E predictions. The objective of this paper is to recommend input values for the M-E design of FDR base materials that result in reliable predictions of FDR long-term performance. The analysis includes both non-stabilized and emulsion-stabilized FDR projects. Both initial International Roughness Index (IRI) and resilient modulus were found to have a significant impact on M-E predictions and were calibrated in a two-step process. The proposed input parameters lead to a conservative design of FDR projects and result in improved IRI predictions compared with the ones derived from current design criteria. With the current design parameters, IRI predictions were, on average, overestimated by 51 in./mi, whereas the proposed input parameters make it possible to reduce this difference to 17 in./mi. Future research is needed to improve current models in M-E pavement design software to adequately model cold in-place recycled layers such as FDR.


2010 ◽  
Vol 5 (2) ◽  
Author(s):  
S.K. Pattanayak ◽  
S. Chang ◽  
M. Theodoulou ◽  
V. Mahendraker

The membrane bioreactor (MBR) process has become an effective alternative wastewater treatment technology that produces effluent with excellent quality. Globally, a wide range of municipal and industrial MBR plants are in operation, varying both in size and complexity. The objective of this investigation was to develop a better understanding of the long term performance of MBR plants. To achieve this objective, eight full-scale municipal MBR plants were examined. The methodology included a review of plant design parameters, pre-treatment system, biological operation, membrane operation, disinfection system and nutrient removal system. In addition, on-site tests were done on permeate, final effluent and mixed liquor to understand MBR performance.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
CC Badiu ◽  
W Eichinger ◽  
D Ruzicka ◽  
I Hettich ◽  
S Bleiziffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document