The Relationship Between Wall Stress and 3D Asymmetry in Repaired and Ruptured Abdominal Aortic Aneurysms

Author(s):  
Barry J. Doyle ◽  
Tim M. McGloughlin

Abdominal aortic aneurysm (AAA) is a permanent dilation of the infrarenal aorta and is defined as having a diameter 50% greater than the original diameter. If left untreated, an AAA will continue to expand until rupture. The maximum diameter is currently the primary indicator of rupture-risk with AAAs > 5.5 cm deemed a likely to rupture. There have, however, been many reports identifying the inadequacies of the maximum diameter criterion to accurately determine the threat of rupture. It is believed by many researchers that there is a need to review the decision of surgical intervention based solely on aneurysm diameter, and rather include other relevant risk factors. These additional risk factors could, for example, include, AAA wall stress, AAA expansion rate, degree of asymmetry, presence of intraluminal thrombus (ILT), and hypertension. The addition of these parameters may aid the surgical decision-making process. A previous report by our group identified the relationship between asymmetry and posterior wall stress in patient-specific cases [1,2] and as over 80% of ruptures occur on the posterior wall [3] this finding may have significant clinical relevance. In this previous report, the study group was limited to 15 cases and asymmetry was only measured in the anterior-posterior plane. This current paper furthers this previous work by increasing the cohort to 40 cases of electively repaired AAAs and also examines 8 cases of ruptured AAAs. The methodology has been improved to now measure asymmetry in all three dimensions (3D).

Author(s):  
Barry J. Doyle ◽  
Anthony Callanan ◽  
Michael T. Walsh ◽  
David A. Vorp ◽  
Timothy M. McGloughlin

An abdominal aortic aneurysm (AAA) can be defined as a permanent and irreversible localised dilation of the infrarenal aorta. This localised dilation is a result of a degradation of the elastic media of the arterial wall. This degradation of the aortic wall can be attributed to risk factors such as tobacco smoking, sex, age, hypertension, chronic obstructive pulmonary disease, hyperlipidaemia, and family history of the disorder [1]. With the recent advancements in medicine, more AAAs are being detected than ever. Approximately 500,000 new cases are diagnosed each year worldwide resulting in 15,000 deaths per year in the USA alone [2]. Currently, the rupture risk of AAAs is regarded as a continuous function of aneurysm size, with surgical intervention decided based on the maximum diameter of the AAA. Most AAA repairs are performed when the diameter exceeds 50–60mm. It has been shown that maximum diameter may not be a reliable predictor of rupture, as smaller AAAs can also rupture. It is believed by many researchers that there is a need to review the determination of the timing of surgical intervention based solely on aneurysm diameter, and include other relevant risk factors. These additional risk factors could, for example, include, AAA wall stress, AAA expansion rate, degree of asymmetry, presence of intraluminal thrombus (ILT), and hypertension. The addition of these parameters may aid the surgical decision-making process. Shifting the current trend towards more encompassing assessment of AAA rupture potential may help reduce the morbidity and mortality rates associated with AAA repair. It was previously reported [3] that 82% of AAA ruptures occur on the posterior wall. In this research, the asymmetry of the AAA is examined, with respect to both peak wall stress and posterior wall stress, in ten realistic cases, and a resulting threshold factor is presented.


Author(s):  
Avinash Ayyalasomayajula ◽  
Bruce R. Simon ◽  
Jonathan P. Vande Geest

Abdominal aortic aneurysm (AAA) is a progressive dilation of the infrarenal aorta and results in a significant alteration in local hemodynamic environment [1]. While an aneurysmal diameter of 5.5cm is typically classified as being of high risk, recent studies have demonstrated that maximum wall stress could be a better indicator of an AAA rupture than maximum diameter [2]. The wall stress is greatly influenced by the blood pressure, aneurysm diameter, shape, wall thickness and the presence of thrombus. The work done by Finol et al. suggested that hemodynamic pressure variations have an insignificant effect on AAA wall stress and that primarily the shape of the aneurysm determines the stress distribution. They noted that for peak wall stress studies the static pressure conditions would suffice as the in vivo conditions. Wang et al have developed an isotropic hyperelastic constitutive model for the intraluminal thrombus (ILT). Such models have been used to study the stress distributions in patient specific AAAs [3, 4].


Author(s):  
Barry J. Doyle ◽  
Anthony Callanan ◽  
John Killion ◽  
Timothy M. McGloughlin

Abdominal aortic aneurysms (AAAs) remain a significant cause of death in the Western world with over 15,000 deaths per year in the US linked to AAA rupture. Recent research [1] has questioned the use of maximum diameter as a definitive risk parameter as it is now believed that alternative factors may be important in rupture-prediction. Wall stress was shown to be a better predictor than diameter of rupture [1], with biomechanics-based rupture indices [2,3] and asymmetry also reported to have potential clinical applicability [4]. However, the majority of numerical methods used to form these alternative rupture parameters are without rigorous experimental validation, and therefore may not be as accurate as believed. Validated experiments are required in order to convince the clinical community of the worth of numerical tools such as finite element analysis (FEA) in AAA risk-prediction. Strain gauges have been used in the past to determine the strain on an AAA [5], however, the photoelastic method has also proved to be a useful tool in AAA biomechanics [6]. This paper examines the approach using three medium-sized patient-specific AAA cases at realistic pressure loadings.


Author(s):  
Alessandro Borghi ◽  
Nigel B. Wood ◽  
Raad H. Mohiaddin ◽  
X. Yun Xu

Thoracoabdominal aneurysm (TA) is a pathology that involves the enlargement of the aortic diameter in the inferior descending thoracic aorta and has risk factors including aortic dissection, aortitis or connective tissue disorders (Webb, T. H. and Williams, G. M. 1999). Abnormal flow patterns and stress on the diseased aortic wall are thought to play an important role in the development of this pathology and the internal wall stress has proved to be more reliable as a predictor of rupture than the maximum diameter for abdominal aortic aneurysms (Fillinger, M. F., et al. 2003). In the present study, two patients with TAs of different maximum diameters were scanned using magnetic resonance imaging (MRI) techniques. Realistic models of the aneurysms were reconstructed from the in vivo MRI data acquired from the patients, and subject-specific flow conditions were applied as boundary conditions. The wall and thrombus were modeled as hyperelastic materials and their properties were derived from the literature. Fully coupled fluid-solid interaction simulations were performed for both cases using ADINA 8.2. Results were obtained for both the flow and wall stress patterns within the aneurysms. The results show that the wall stress distribution and its magnitude are strongly dependent on the 3-D shape of the aneurysm and the distribution of thrombus.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Sergio Ruiz de Galarreta ◽  
Aitor Cazón ◽  
Raúl Antón ◽  
Ender A. Finol

The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.


Vascular ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 411-418 ◽  
Author(s):  
Erasmo S da Silva ◽  
Vitor C Gornati ◽  
Ivan B Casella ◽  
Ricardo Aun ◽  
Andre EV Estenssoro ◽  
...  

Objective To analyze the characteristics of patients with abdominal aortic aneurysms referred to a tertiary center and to compare with individuals with abdominal aortic aneurysm found at necropsy. Methods We have retrospectively analyzed the medical records of 556 patients with abdominal aortic aneurysm and 102 cases abdominal aortic aneurysm found at necropsy. Results At univariated analysis, hypertension, tobacco use and maximum diameter were significant risk factors for symptomatic aneurysm, while diabetes tended to be a protective factor for rupture. By logistic regression analysis, the largest transverse diameter was the only one significantly associated with abdominal aortic aneurysm rupture ( p < .0001, odds ratio 1.7, 95% confidence interval 1.481–1.951). Intact abdominal aortic aneurysm found at necropsy showed similarities with outpatients in relation to abdominal aortic aneurysm diameter and risk factors. Conclusion Intact abdominal aortic aneurysm at necropsy and at outpatients setting showed similarities that confirmed that abdominal aortic aneurysm repair is less offered to women, and they died more frequently with intact abdominal aortic aneurysm from other causes.


2019 ◽  
Vol 317 (5) ◽  
pp. H981-H990 ◽  
Author(s):  
Daniel J. Romary ◽  
Alycia G. Berman ◽  
Craig J. Goergen

An abdominal aortic aneurysm (AAA), defined as a pathological expansion of the largest artery in the abdomen, is a common vascular disease that frequently leads to death if rupture occurs. Once diagnosed, clinicians typically evaluate the rupture risk based on maximum diameter of the aneurysm, a limited metric that is not accurate for all patients. In this study, we worked to evaluate additional distinguishing factors between growing and stable murine aneurysms toward the aim of eventually improving clinical rupture risk assessment. With the use of a relatively new mouse model that combines surgical application of topical elastase to cause initial aortic expansion and a lysyl oxidase inhibitor, β-aminopropionitrile (BAPN), in the drinking water, we were able to create large AAAs that expanded over 28 days. We further sought to develop and demonstrate applications of advanced imaging approaches, including four-dimensional ultrasound (4DUS), to evaluate alternative geometric and biomechanical parameters between 1) growing AAAs, 2) stable AAAs, and 3) nonaneurysmal control mice. Our study confirmed the reproducibility of this murine model and found reduced circumferential strain values, greater tortuosity, and increased elastin degradation in mice with aneurysms. We also found that expanding murine AAAs had increased peak wall stress and surface area per length compared with stable aneurysms. The results from this work provide clear growth patterns associated with BAPN-elastase murine aneurysms and demonstrate the capabilities of high-frequency ultrasound. These data could help lay the groundwork for improving insight into clinical prediction of AAA expansion. NEW & NOTEWORTHY This work characterizes a relatively new murine model of abdominal aortic aneurysms (AAAs) by quantifying vascular strain, stress, and geometry. Furthermore, Green-Lagrange strain was calculated with a novel mapping approach using four-dimensional ultrasound. We also compared growing and stable AAAs, finding peak wall stress and surface area per length to be most indicative of growth. In all AAAs, strain and elastin health declined, whereas tortuosity increased.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Tejas Canchi ◽  
Sourav S. Patnaik ◽  
Hong N. Nguyen ◽  
E. Y. K. Ng ◽  
Sriram Narayanan ◽  
...  

Abstract In this work, we provide a quantitative assessment of the biomechanical and geometric features that characterize abdominal aortic aneurysm (AAA) models generated from 19 Asian and 19 Caucasian diameter-matched AAA patients. 3D patient-specific finite element models were generated and used to compute peak wall stress (PWS), 99th percentile wall stress (99th WS), and spatially averaged wall stress (AWS) for each AAA. In addition, 51 global geometric indices were calculated, which quantify the wall thickness, shape, and curvature of each AAA. The indices were correlated with 99th WS (the only biomechanical metric that exhibited significant association with geometric indices) using Spearman's correlation and subsequently with multivariate linear regression using backward elimination. For the Asian AAA group, 99th WS was highly correlated (R2 = 0.77) with three geometric indices, namely tortuosity, intraluminal thrombus volume, and area-averaged Gaussian curvature. Similarly, 99th WS in the Caucasian AAA group was highly correlated (R2 = 0.87) with six geometric indices, namely maximum AAA diameter, distal neck diameter, diameter–height ratio, minimum wall thickness variance, mode of the wall thickness variance, and area-averaged Gaussian curvature. Significant differences were found between the two groups for ten geometric indices; however, no differences were found for any of their respective biomechanical attributes. Assuming maximum AAA diameter as the most predictive metric for wall stress was found to be imprecise: 24% and 28% accuracy for the Asian and Caucasian groups, respectively. This investigation reveals that geometric indices other than maximum AAA diameter can serve as predictors of wall stress, and potentially for assessment of aneurysm rupture risk, in the Asian and Caucasian AAA populations.


Author(s):  
Lambert Speelman ◽  
E. Marielle H. Bosboom ◽  
Geert Willem H. Schurink ◽  
Jaap Buth ◽  
Marcel Breeuwer ◽  
...  

In the decision for surgical repair of abdominal aortic aneurysms (AAAs), the risk of rupture is weighed carefully against the risk of the surgical procedure. Currently, AAA diameter is the main factor that determines the decision for surgery. However, in rupture risk estimation AAA wall stress has higher sensitivity and specificity than maximum diameter [1]. Moreover, peak wall stress was higher for ruptured than for non-ruptured or asymptomatic AAAs [2, 3].


Sign in / Sign up

Export Citation Format

Share Document