Mechanotransductive Effects of Acoustic Radiation Force on Osteoblastic Primary Cilium, Cytoskeleton and Ca2+ Influx

Author(s):  
Y. X. Qin ◽  
S. Zhang ◽  
J. Cheng

Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound, as a mechanical signal, can produce a wide variety of biological effects in vitro and in vivo[1]. For example, pulsed ultrasound can be used to accelerate the rate of bone fracture healing noninvasively. Although a wide range of studies have been done, mechanism for this therapeutic effect on bone healing is currently unknown and still under active investigation. In our previous studies, we have developed methodology allowed in vitro manipulating osteoblastic cells using acoustic radiation force (ARF) generated by ultrasound without the effects of acoustic streaming and ultrasound-induced temperature rise. Furthermore, we also confirmed that ARF modulated intracellular Ca2+ transient in MC3T3-E1 osteoblast-like cells in a strain and frequency-dependent manner. A potential mechanism by which bone cells may sense ultrasound is through their structures such as primary cilia and cytoskeletons. The purpose of the current study was to evaluate the hypothesis that acoustic radiation force can regulate the activities of the primary cilium and the cytoskeleton of the cells, which act as the mechanotransductive signals to mediate Ca2+ flux, as a pathway in response to cyclic loading.

2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2019 ◽  
Vol 18 (14) ◽  
pp. 1983-1990 ◽  
Author(s):  
V. Lenin Maruthanila ◽  
Ramakrishnan Elancheran ◽  
Ajaikumar B. Kunnumakkar ◽  
Senthamaraikannan Kabilan ◽  
Jibon Kotoky

Emerging evidence present credible support in favour of the potential role of mahanine and girinimbine. Non-toxic herbal carbazole alkaloids occur in the edible part of Murraya koenigii, Micromelum minutum, M. zeylanicum, and M. euchrestiolia. Mahanine and girinimbine are the major potent compounds from these species. In fact, they interfered with tumour expansion and metastasis development through down-regulation of apoptotic and antiapoptotic protein, also involved in the stimulation of cell cycle arrest. Consequently, these compounds were well proven for the in-vitro and in vivo evaluation that could be developed as novel agents either alone or as an adjuvant to conventional therapeutics. Therefore, mahanine and girinimbine analogs have the potential to be the promising chemopreventive agents for the tumour recurrence and the treatment of human malignancies. In this review, an updated wide-range of pleiotropic anticancer and biological effects induction by mahanine and girinimbine against cancer cells were deeply summarized.


Author(s):  
Mehmet Kaya ◽  
Catalin Toma ◽  
Jianjun Wang ◽  
Michelle Grata ◽  
Huili Fu ◽  
...  

1990 ◽  
Vol 10 (11) ◽  
pp. 5782-5795 ◽  
Author(s):  
D K Wiest ◽  
D K Hawley

Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction conditions, termination is not observed downstream of the ML promoter. However, in the presence of Sarkosyl, up to 80% of the transcripts terminate 186 nucleotides downstream of the start site. Using this assay, we showed that the DNA sequences required to promote maximal levels of termination downstream of the ML promoter reside within a 65-base-pair region and function in an orientation-dependent manner. To test whether elongation complexes from the ML promoter were functionally homogeneous, we determined the termination efficiency at each of two termination sites placed in tandem. We found that the behavior of the elongation complexes was different at these sites, with termination being greater at the downstream site over a wide range of Sarkosyl concentrations. This result ruled out a model in which the polymerases that read through the first site were stably modified to antiterminate. We also demonstrated that the ability of the elongation complexes to respond to the ML termination site was promoter specific, as the site did not function efficiently downstream of a heterologous promoter. Taken together, the results presented here are not consistent with the simplest class of models that have been proposed previously for the mechanism of Sarkosyl-induced termination.


2021 ◽  
Vol 8 ◽  
Author(s):  
An Liu ◽  
Wenyuan Shi ◽  
Dongdong Lin ◽  
Haihui Ye

C-type allatostatins (C-type ASTs) are a family of structurally related neuropeptides found in a wide range of insects and crustaceans. To date, the C-type allatostatin receptor in crustaceans has not been deorphaned, and little is known about its physiological functions. In this study, we aimed to functionally define a C-type ASTs receptor in the mud crab, Scylla paramamosian. We showed that C-type ASTs receptor can be activated by ScypaAST-C peptide in a dose-independent manner and by ScypaAST-CCC peptide in a dose-dependent manner with an IC50 value of 6.683 nM. Subsequently, in vivo and in vitro experiments were performed to investigate the potential roles of ScypaAST-C and ScypaAST-CCC peptides in the regulation of ecdysone (20E) and methyl farnesoate (MF) biosynthesis. The results indicated that ScypaAST-C inhibited biosynthesis of 20E in the Y-organ, whereas ScypaAST-CCC had no effect on the production of 20E. In addition, qRT-PCR showed that both ScypaAST-C and ScypaAST-CCC significantly decreased the level of expression of the MF biosynthetic enzyme gene in the mandibular organ, suggesting that the two neuropeptides have a negative effect on the MF biosynthesis in mandibular organs. In conclusion, this study provided new insight into the physiological roles of AST-C in inhibiting ecdysone biosynthesis. Furthermore, it was revealed that AST-C family peptides might inhibit MF biosynthesis in crustaceans.


Endocrinology ◽  
2013 ◽  
Vol 154 (6) ◽  
pp. 2069-2080 ◽  
Author(s):  
Lalita Wattanachanya ◽  
Wei-Dar Lu ◽  
Ramendra K. Kundu ◽  
Liping Wang ◽  
Marcia J. Abbott ◽  
...  

Abstract Adipose tissue plays an important role in skeletal homeostasis, and there is interest in identifying adipokines that influence bone mass. One such adipokine may be apelin, a ligand for the Gi-G protein-coupled receptor APJ, which has been reported to enhance mitogenesis and suppress apoptosis in MC3T3-E1 cells and primary human osteoblasts (OBs). However, it is unclear whether apelin plays a physiological role in regulating skeletal homeostasis in vivo. In this study, we compared the skeletal phenotypes of apelin knockout (APKO) and wild-type mice and investigated the direct effects of apelin on bone cells in vitro. The increased fractional cancellous bone volume at the distal femur was observed in APKO mice of both genders at 12 weeks of age and persisted until the age of 20. Cortical bone perimeter at the femoral midshaft was significantly increased in males and females at both time points. Dynamic histomorphometry revealed that APKO mice had increased rates of bone formation and mineral apposition, with evidences of accelerated OB proliferation and differentiation, without significant alteration in osteoclast activity. An in vitro study showed that apelin increased proliferation of primary mouse OBs as well as suppressed apoptosis in a dose-dependent manner with the maximum effect at 5nM. However, it had no effect on the formation of mineralized nodules. We did not observed significantly altered in osteoclast parameters in vitro. Taken together, the increased bone mass in mice lacking apelin suggested complex direct and paracrine/endocrine effects of apelin on bone, possibly via modulating insulin sensitivity. These results indicate that apelin functions as a physiologically significant antianabolic factor in bone in vivo.


2021 ◽  
Vol 18 ◽  
Author(s):  
Danielle R. Gonçalves ◽  
Thais B. Cesar ◽  
John A. Manthey ◽  
Paulo I. Costa

Background: Citrus polymethoxylated flavones (PMFs) reduce the synthesis of liver lipoproteins in animal and in vitro cell assays, but few studies have evaluated the direct effects of their metabolites on this highly regulated process. Objective: To investigate the effects of representative metabolites of PMF on the secretion of liver lipoproteins using the mammalian cell Huh7.5. Method: In this study, the influences of three PMFs and five previously isolated PMF metabolites on hepatic apoB-100 secretion and microsomal transfer protein (MTP) activity were evaluated. Tangeretin (TAN), nobiletin (NOB) and 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF), and their glucuronides (TAN-Gluc, NOB-Gluc and HMF-Gluc) and oxidatively demethylated metabolites (TAN-OH, NOB-OH, HMF-OH) were incubated with Huh7.5 cells to measure their inhibitory effects on lipid synthesis. Results: The results showed that TAN, HMF and TAN-OH reduced the secretion of apoB-100 in a dose-dependent manner, while NOB and the other tested metabolites showed no inhibition. MTP activity in the Huh7.5 cells was significantly reduced in the presence of low concentrations of TAN, and in high concentrations of NOB-OH. This study also showed that PMFs and PMF metabolites produced a wide range of effects on apoB-100 secretion and MTP activity. Conclusion: The results suggest that while PMFs and their metabolites control dyslipidemia in vivo, the inhibition of MTP activity cannot be the only pathway influenced by these compounds.


2012 ◽  
Vol 38 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Liang Zhai ◽  
Thomas J. Polascik ◽  
Wen-Chi Foo ◽  
Stephen Rosenzweig ◽  
Mark L. Palmeri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document