Pleiotropic Effect of Mahanine and Girinimbine Analogs: Anticancer Mechanism and its Therapeutic Versatility

2019 ◽  
Vol 18 (14) ◽  
pp. 1983-1990 ◽  
Author(s):  
V. Lenin Maruthanila ◽  
Ramakrishnan Elancheran ◽  
Ajaikumar B. Kunnumakkar ◽  
Senthamaraikannan Kabilan ◽  
Jibon Kotoky

Emerging evidence present credible support in favour of the potential role of mahanine and girinimbine. Non-toxic herbal carbazole alkaloids occur in the edible part of Murraya koenigii, Micromelum minutum, M. zeylanicum, and M. euchrestiolia. Mahanine and girinimbine are the major potent compounds from these species. In fact, they interfered with tumour expansion and metastasis development through down-regulation of apoptotic and antiapoptotic protein, also involved in the stimulation of cell cycle arrest. Consequently, these compounds were well proven for the in-vitro and in vivo evaluation that could be developed as novel agents either alone or as an adjuvant to conventional therapeutics. Therefore, mahanine and girinimbine analogs have the potential to be the promising chemopreventive agents for the tumour recurrence and the treatment of human malignancies. In this review, an updated wide-range of pleiotropic anticancer and biological effects induction by mahanine and girinimbine against cancer cells were deeply summarized.

2020 ◽  
Vol 11 (6) ◽  
pp. 5357-5376
Author(s):  
Rabab Kamel ◽  
Abeer Salama ◽  
Nermine M. Shaffie ◽  
Nesma M. Salah

Two-level orthogonal factorial design was used to optimize GO-loaded chitosan nanorods. This study proves that the nanoencapsulation of GO is a promising strategy which overcomes its limitations and improves its biological effects.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 596 ◽  
Author(s):  
María del Carmen Villegas-Aguilar ◽  
Álvaro Fernández-Ochoa ◽  
María de la Luz Cádiz-Gurrea ◽  
Sandra Pimentel-Moral ◽  
Jesús Lozano-Sánchez ◽  
...  

Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.


1991 ◽  
Vol 260 (2) ◽  
pp. L13-L28 ◽  
Author(s):  
E. Sigal

The metabolism of arachidonic acid by cyclooxygenase and lipoxygenase enzymes results in a wide range of oxidized products with potent biological activities. These metabolites, which include the prostaglandins and leukotrienes, have been implicated in the pathogenesis of a variety of inflammatory diseases. Research over the last decade has focused primarily on the elucidation of the chemical structure of the metabolites and their biological effects in vitro and in vivo. Recently, research on the enzymes that produce these bioactive metabolites through oxidization of arachidonic acid has intensified. Recombinant DNA techniques have enabled investigators to determine the nucleotide sequences for several of the enzymes in the arachidonic acid cascade. The resulting cDNAs are now being used to further investigate the biochemical and biological features of arachidonic acid metabolism. The purpose of this paper is to review how the cDNAs for these enzymes were obtained, what information they convey, and how they are being applied in current research.


2021 ◽  
Author(s):  
Thanh Huyen Phan ◽  
Shiva Kamini Divakarla ◽  
Jia Hao Yeo ◽  
Qingyu Lei ◽  
Priyanka Tharkar ◽  
...  

AbstractExtracellular vesicles (EVs) have been lauded as next generation medicines, but very few EV-based therapeutics have progressed to clinical use. Limited clinical translation is largely due to technical barriers that hamper our ability to mass-produce EVs, i.e. to isolate, purify and characterise them effectively. Technical limitations in comprehensive characterisation of EVs leads to unpredicted biological effects of EVs. Here, using a range of optical and non-optical techniques, we showed that the differences in molecular composition of EVs isolated using two isolation methods correlated with the differences in their biological function. Our results demonstrated that the isolation method determines the composition of isolated EVs at single and sub-population levels. Besides the composition, we measured for the first time the dry mass and predicted sedimentation of EVs. These parameters were shown to correlate well with the biological and functional effects of EVs on single cell and cell cultures. We anticipate that our new multiscale characterisation approach, which goes beyond traditional experimental methodology, will support fundamental understanding of EVs as well as elucidate the functional effects of EVs in in vitro and in vivo studies. Our findings and methodology will be pivotal for developing optimal isolation methods and establishing EVs as mainstream therapeutics and diagnostics. This innovative approach is applicable to a wide range of sectors including biopharma and biotechnology as well as to regulatory agencies.


Author(s):  
Y. X. Qin ◽  
S. Zhang ◽  
J. Cheng

Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound, as a mechanical signal, can produce a wide variety of biological effects in vitro and in vivo[1]. For example, pulsed ultrasound can be used to accelerate the rate of bone fracture healing noninvasively. Although a wide range of studies have been done, mechanism for this therapeutic effect on bone healing is currently unknown and still under active investigation. In our previous studies, we have developed methodology allowed in vitro manipulating osteoblastic cells using acoustic radiation force (ARF) generated by ultrasound without the effects of acoustic streaming and ultrasound-induced temperature rise. Furthermore, we also confirmed that ARF modulated intracellular Ca2+ transient in MC3T3-E1 osteoblast-like cells in a strain and frequency-dependent manner. A potential mechanism by which bone cells may sense ultrasound is through their structures such as primary cilia and cytoskeletons. The purpose of the current study was to evaluate the hypothesis that acoustic radiation force can regulate the activities of the primary cilium and the cytoskeleton of the cells, which act as the mechanotransductive signals to mediate Ca2+ flux, as a pathway in response to cyclic loading.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1287 ◽  
Author(s):  
Shanaya Ramchandani ◽  
Irum Naz ◽  
Jong Hyun Lee ◽  
Muhammad Rashid Khan ◽  
Kwang Seok Ahn

Cancer persists as one of the leading causes of deaths worldwide, contributing to approximately 9.6 million deaths per annum in recent years. Despite the numerous advancements in cancer treatment, there is still abundant scope to mitigate recurrence, adverse side effects and toxicities caused by existing pharmaceutical drugs. To achieve this, many phytochemicals from plants and natural products have been tested against cancer cell lines in vivo and in vitro. Likewise, casticin, a flavonoid extracted from the Vitex species, has been isolated from the leaves and seeds of V. trifolia and V. agnus-castus. Casticin possesses a wide range of therapeutic properties, including analgesic, anti-inflammatory, antiangiogenic, antiasthmatic and antineoplastic activities. Several studies have been conducted on the anticancer effects of casticin against cancers, including breast, bladder, oral, lung, leukemia and hepatocellular carcinomas. The compound inhibits invasion, migration and proliferation and induces apoptosis (casticin-induced, ROS-mediated and mitochondrial-dependent) and cell cycle arrest (G0/G1, G2/M, etc.) through different signaling pathways, namely the PI3K/Akt, NF-κB, STAT3 and FOXO3a/FoxM1 pathways. This review summarizes the chemo-preventive ability of casticin as an antineoplastic agent against several malignancies.


Blood ◽  
2002 ◽  
Vol 99 (4) ◽  
pp. 1267-1272 ◽  
Author(s):  
Renée Bazin ◽  
Éric Aubin ◽  
Lucie Boyer ◽  
Isabelle St-Amour ◽  
Chantal Roberge ◽  
...  

The prophylaxis of the hemolytic disease of the newborn requires significant amounts of plasma-derived polyclonal human anti-D. Because of procurement problems, there is a growing interest in replacing plasma-derived anti-D by in vitro–produced human monoclonal anti-D. Hundreds of monoclonal anti-D have been prepared, but the selection of the most potent for in vivo use is difficult because it cannot be predicted by in vitro characterization. This study evaluated the possibility of using nonobese diabetic/severe combined immunodeficient (NOD-scid) mice for the in vivo evaluation of human monoclonal anti-D. Human red blood cells (RBCs) were found to circulate normally in the blood of NOD-scid mice previously injected with a physiologic amount of human immunoglobulin G (10 mg). The addition of a small amount of anti-D (1 to 5 μg) resulted in the clearance of Rh D+RBCs within 4 hours. The comparative testing of 8 monoclonal anti-Ds showed a wide range of potency (15% to 87%) relative to plasma-derived polyclonal anti-D. There was no strong correlation between the in vivo potency index and the immunoglobulin G isotype, affinity, or fine specificity of the antibodies. These results show the usefulness of NOD-scid mice for the initial in vivo screening of human monoclonal anti-D before testing the most active antibodies in clinical trials done in human volunteers.


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Rosalba Leuci ◽  
Leonardo Brunetti ◽  
Viviana Poliseno ◽  
Antonio Laghezza ◽  
Fulvio Loiodice ◽  
...  

Secondary metabolites from plants and fungi are stimulating growing interest in consumers and, consequently, in the food and supplement industries. The beneficial effects of these natural compounds are being thoroughly studied and there are frequent updates about the biological activities of old and new molecules isolated from plants and fungi. In this article, we present a review of the most recent literature regarding the recent discovery of secondary metabolites through isolation and structural elucidation, as well as the in vitro and/or in vivo evaluation of their biological effects. In particular, the possibility of using these bioactive molecules in the prevention and/or treatment of widely spread pathologies such as cardiovascular and neurodegenerative diseases is discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
J. Gambini ◽  
M. Inglés ◽  
G. Olaso ◽  
R. Lopez-Grueso ◽  
V. Bonet-Costa ◽  
...  

Plants containing resveratrol have been used effectively in traditional medicine for over 2000 years. It can be found in some plants, fruits, and derivatives, such as red wine. Therefore, it can be administered by either consuming these natural products or intaking nutraceutical pills. Resveratrol exhibits a wide range of beneficial properties, and this may be due to its molecular structure, which endow resveratrol with the ability to bind to many biomolecules. Among these properties its activity as an anticancer agent, a platelet antiaggregation agent, and an antioxidant, as well as its antiaging, antifrailty, anti-inflammatory, antiallergenic, and so forth activities, is worth highlighting. These beneficial biological properties have been extensively studied in humans and animal models, bothin vitroandin vivo. The issue of bioavailability of resveratrol is of paramount importance and is determined by its rapid elimination and the fact that its absorption is highly effective, but the first hepatic step leaves little free resveratrol. Clarifying aspects like stability and pharmacokinetics of resveratrol metabolites would be fundamental to understand and apply the therapeutic properties of resveratrol.


Author(s):  
Leoni Villano Bonamin ◽  
Renata Rossetini Palombo ◽  
Carolina Shultz Morim ◽  
Sandra AG Pinto ◽  
Luciane Costa Dalboni ◽  
...  

In previous studies [1,2] we showed that treatment of mice with Antimonium crudum (Ant-c) 30cH was able to significantly reduce monocyte migration to the infection site after injection of Leishmania (L) amazonensis into the subcutaneous tissue, resulting in clinical improvement. Follow up was performed with an in vitro model, which showed that treatment of co-cultures of RAW 264.7 macrophages and parasites with Ant-c 30cH inhibited two parasite-induced CCL2 peaks 48 and 120 hours after infection together with early inhibition of lysosome activity. These findings explained the results previously obtained in vivo. In turn, treatment with Ant-c 200cH resulted in an early and transitory peak of cell spreading at 48 hours. The coherence between the in vivo and in vitro results indicates that this is a good model to study more thoroughly the mechanisms of action of homeopathic medicines, being the first step to establish correlations between the biological effects and the physical and chemical features of Ant-c 30cH and 200cH. In the present study, the same experimental model was replicated, through comparison of vehicle (30% cereal alcohol), Ant-c 200cH, Zincum metallicum (Zinc) 200cH and Arsenicum album (Ars) 200cH, to confirm the specificity of Ant-c effects. In addition, Ant-c 200cH was ultra-centrifuged, and only the superficial phase was applied to the culture medium. This procedure intended to separate the heavier particles from the lighter ones suspended in the homeopathic medicine. The physical-chemical profile of the medicines was assessed. Solid contaminants (microparticles) in the suspension were analyzed. Conductivity was assessed through measurement of the electron current induced by a micro-amperimeter (Ryodoraku®) connected to 2 clean electrodes immersed in the samples, prepared immediately before the analysis, diluted in pure water (MilliQ, Millipore®) and filtered in 22-µ filter (Millipore®). Pure water was used as control. The device was calibrated immediately before measurements. The microparticle profile was assessed with a scanning electronic microscope - SEM (JEOL JSM 6510®) coupled to an energy dispersive spectroscopy (EDS) system to identify the nature of the elements present in each particle. The size and the number of particles were analyzed from the images generated by electronic microscopy with an automatic image analysis system (Metamorph®). For this purpose, all materials used was cleansed through immersion in pure acetone and subjected to 30-minute sonication before insertion into the microscope to avoid secondary contamination. The samples of medicines were subjected to ultra-centrifugation (10000rpm for 60 minutes) to induce particle sedimentation in the bottom of microtubes. 10 microliters of each sample were collected from the bottom of tubes and placed on a copper stub and kept in a closed recipient until the material was fully dry. The samples were directly analyzed with the microscope. Metallization was not necessary, because the analyzed particles had metallic nature. The biological effects of Ant-c 200cH reproduced the previous ones: spreading and phagocytosis index were significantly higher in the co-cultures treated with Ant-c 200cH compared to vehicle and other, non-specific treatments (Ars 200cH and Zinc 200cH) (p=0.05). However, these results were not exhibited by centrifuged Ant-c 200cH. Analysis of the supernatant after 48-hour incubation revealed increase of the GM-CSF content only in cultures treated with Ant-c 200cH and centrifuged-Ant-c 200cH. No change was observed in the cytokine profile in the cultures treated with Ars 200cH or Zinc 200cH. Morphological analysis of Ant-c samples on SEM showed that the microparticles in Ant-c 30cH were smaller compared to Ant-c 6cH, most of them having half-moon shape. Curiously, agglomerates of particles were detected in Ant-c 200cH. Contaminant particles suspended in pure water contained Pb, Zn, Ca, Na, Au, Hg, Nb and Si, therefore, not related to any specific biological effect of Ant-c. P was identified only in Ant-c 30cH (6.51%) and Ant-c 200cH (13.56%). This wide-range profile of different microparticles did not change after centrifugation, which indicates that the weight of these particles is not conditioned by the nature of their component elements. Conductivity was lower in the vehicle (30% alcohol) compared to Ant-c 6, 30 and 200cH (p=0.0001); the conductivity of Ant-c 200cH was the highest (p=0.008). Also Ars 200cH exhibited higher conductivity (p=0.001) compared to the vehicle. Taken together, these data suggest that the biological effect of Ant-c 200cH on macrophage spreading and phagocytosis might be partially related to the size of the microparticles found in suspension. However, specific effects relative to cytokine production did not depend on microparticle size or content. The changes in conductivity changes exhibited correlation with presence of some elements, such as P, but not with any biological effect. To summarize, the results point to the relevance of eventual false-positive effects relative to phagocytosis in macrophages treated with homeopathic medicines in vitro, due to the interference of larger sized microparticles. They also points to the specificity of GM-CSF expression after 48-hours of co-culture exposure to Ant-c 200cH, centrifuged or not, which suggests it was independent from microparticle content and conductivity. The physical-chemical features of homeopathic medicines related to their specific biological effects are still unknown. Additional studies are needed in this regard.


Sign in / Sign up

Export Citation Format

Share Document