Optimization of Pedicle Screw Depth in the Lumbar Spine

Author(s):  
Laura E. Buckenmeyer ◽  
Kristophe J. Karami ◽  
Ata M. Kiapour ◽  
Vijay K. Goel ◽  
Teck M. Soo ◽  
...  

Optimization of pedicle screw insertion depth for ideal fixation and fusion remains a clinical challenge. Improved screw purchase may improve fixation strength 1, which is especially critical in an osteoporotic patient population. Extended screw insertion depths, up to and through the anterior cortex, have yet to be compared to more commonly used shorter pedicle screws in a laboratory controlled series of experiments. The purpose of this study is to evaluate screw purchase in the osteoporotic lumbar spine as a function of insertion depth, which may be used to optimize pedicle screw-rod constructs.


Author(s):  
Laura E. Buckenmeyer ◽  
Kristophe J. Karami ◽  
Ata M. Kiapour ◽  
Vijay K. Goel ◽  
Constantine K. Demetropoulos ◽  
...  

Osteoporosis is a critical challenge in orthopedic surgery. Osteoporotic patients have an increased risk of loosening and failure of implant constructs due to a weaker bone-implant interface than with healthy bone. Pullout strength of pedicle screws is enhanced by increased screw insertion depth. However, more knowledge is needed to define optimal pedicle screw insertion depth in relation to screw-bone interface biomechanics and the resulting loosening risk. This study evaluates the effects of screw length on loosening risk in the osteoporotic lumbar spine.



2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.



2021 ◽  
Author(s):  
Vishal Kumar ◽  
Vishnu Baburaj ◽  
Prasoon Kumar ◽  
Sarvdeep Singh Dhatt

AbstractBackgroundPedicle screw insertion is routinely carried out in spine surgery that has traditionally been performed under fluoroscopy guidance. Robotic guidance has recently gained popularity in order to improve the accuracy of screw placement. However, it is unclear whether the use of robotics alters the accuracy of screw placement or clinical outcomes.ObjectivesThis systematic review aims to compare the results of pedicle screws inserted under fluoroscopy guidance, with those inserted under robotic guidance, in terms of both short-term radiographic outcomes, as well as long-term clinical outcomes.MethodsThis systematic review will be conducted according to the PRISMA guidelines. A literature search will be conducted on the electronic databases of PubMed, Embase, Scopus, and Ovid with a pre-determined search strategy. A manual bibliography search of included studies will also be done. Original articles in English that directly compare pedicle screw insertion under robotic guidance to those inserted under fluoroscopy guidance will be included. Data on outcomes will be extracted from included studies and analysis carried out with the help of appropriate software.



2021 ◽  
Vol 12 ◽  
pp. 518
Author(s):  
Mohamed M. Arnaout ◽  
Magdy O. ElSheikh ◽  
Mansour A. Makia

Background: Transpedicular screws are extensively utilized in lumbar spine surgery. The placement of these screws is typically guided by anatomical landmarks and intraoperative fluoroscopy. Here, we utilized 2-week postoperative computed tomography (CT) studies to confirm the accuracy/inaccuracy of lumbar pedicle screw placement in 145 patients and correlated these findings with clinical outcomes. Methods: Over 6 months, we prospectively evaluated the location of 612 pedicle screws placed in 145 patients undergoing instrumented lumbar fusions addressing diverse pathology with instability. Routine anteroposterior and lateral plain radiographs were obtained 48 h after the surgery, while CT scans were obtained at 2 postoperative weeks (i.e., ideally these should have been performed intraoperatively or within 24–48 h of surgery). Results: Of the 612 screws, minor misplacement of screws (≤2 mm) was seen in 104 patients, moderate misplacement in 34 patients (2–4 mm), and severe misplacement in 7 patients (>4 mm). Notably, all the latter 7 (4.8% of the 145) patients required repeated operative intervention. Conclusion: Transpedicular screw insertion in the lumbar spine carries the risks of pedicle medial/lateral violation that is best confirmed on CT rather than X-rays/fluoroscopy alone. Here, we additional found 7 patients (4.8%) who with severe medial/lateral pedicle breach who warranting repeated operative intervention. In the future, CT studies should be performed intraoperatively or within 24–48 h of surgery to confirm the location of pedicle screws and rule in our out medial or lateral pedicle breaches.



2019 ◽  
Vol 10 (3) ◽  
pp. 261-265
Author(s):  
Yuki Taniguchi ◽  
Yoshitaka Matsubayashi ◽  
So Kato ◽  
Takashi Ono ◽  
Yasushi Oshima ◽  
...  

Study Design: Retrospective cohort study. Objectives: To investigate the feasibility of inserting pedicle screws in the proximal thoracic (PT) curve in Lenke type 2 idiopathic scoliosis, using post-myelography computed tomography (CT). Methods: Post-myelography CT images of 46 Japanese patients, 10 to 30 years old, who underwent surgery for Lenke type 2 idiopathic scoliosis were analyzed. A new parameter “SAPS” (space available for pedicle screw) was introduced, which defines the minimal distance between the lateral cortex of the pedicle and the spinal cord, with a SAPS <4.5 mm being “unacceptable.” All 460 pedicles (T2 through T6) were analyzed. Pedicle diameter was classified according to the Akazawa grading system. Results: Most pedicles on the right side at T3 (84.8%) and T4 (97.8%) were unacceptable. The unacceptable rate was 58.7% and 15.2% on the right side at T5 and T6, respectively. A larger Cobb angle of the PT curve was associated with a greater incidence of unacceptable SAPS at these levels. For a Cobb angle of the PT curve >40°, most right T5 pedicles were unacceptable. On the left side, most pedicles from T2 to T5 were acceptable. When T5 was the caudal end vertebra of the PT curve, the left T6 pedicles had an unacceptable SAPS in some cases. When the width of the pedicle channel was ≥2 mm (Akazawa grade 1 or 2), all pedicles from T2 to T6, on both sides, were acceptable. Conclusions: Post-myelography CT enabled us to clearly demonstrate the feasibility of inserting pedicle screws in the PT region.



2019 ◽  
Vol 19 (2) ◽  
pp. E149-E150 ◽  
Author(s):  
Nikolay L Martirosyan ◽  
Joshua T Wewel ◽  
Juan S Uribe

Abstract Many established techniques exist for minimally invasive pedicle screw placement. Nearly all techniques incorporate the use of a Kershner wire (K-wire) at various points in the work-flow. The use of a K-wire adds an additional step. If its position is lost, it requires repeating all previous steps, and placement is not without complication. The use of a guide-wireless sharp screws allows the surgeon to place a pedicle screw in 1 step with several fluid maneuvers.1 The patient underwent Institutional Review Board-approved consent for this study. Following traditional computed tomography-based navigation, a stab incision is made, followed by fascial dissection with monopolar cautery. The sharp screw is placed percutaneously at the facet-transverse process junction. The precise entry point is confirmed with navigation, followed by a sentinel anterior-posterior fluoroscopic image, verifying the accuracy of the navigation. The cortical bone is traversed by malleting the sharp tip through the cortex. When the cancellous bone is engaged, the screw is then advanced through the pedicle. This set of steps allows for safe, efficient placement of percutaneous pedicle screws without the need for a guidewire. Mal-placement regarding sharp pedicle screw insertion is similar to K-wire-dependent screw placement. Surgeons must be cognoscente of exceptionally sclerotic bone, which can prove difficult to cannulate. Conversely, osteoporotic bone that is liable to a cortical pedicle breach, transverse process fracture, and/or maltrajectory are all considerations when placing a K-wireless, sharp pedicle screw. Anterior-posterior fluoroscopy is utilized to confirm accuracy of image-guided navigation and mitigate malplacement of pedicle screws.



2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.



2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Thomas M. Shea ◽  
James J. Doulgeris ◽  
Sabrina A. Gonzalez-Blohm ◽  
William E. Lee ◽  
Kamran Aghayev ◽  
...  

Many successful attempts to increase pullout strength of pedicle screws in osteoporotic bone have been accompanied with an increased risk of catastrophic damage to the patient. To avoid this, a single-armed expansive pedicle screw was designed to increase fixation strength while controlling postfailure damage away from the nerves surrounding the pedicle. The screw was then subsequently tested in two severely osteoporotic models: one representing trabecular bone (with and without the presence of polymethylmethacrylate) and the other representing a combination of trabecular and cortical bone. Maximum pullout strength, stiffness, energy to failure, energy to removal, and size of the resulting block damage were statistically compared among conditions. While expandable pedicle screws produced maximum pullout forces less than or comparable to standard screws, they required a higher amount of energy to be fully removed from both models. Furthermore, damage to the cortical layer in the composite test blocks was smaller in all measured directions for tests involving expandable pedicle screws than those involving standard pedicle screws. This indicates that while initial fixation may not differ in the presence of cortical bone, the expandable pedicle screw offers an increased level of postfailure stability and safety to patients awaiting revision surgery.



2016 ◽  
Vol 26 (11) ◽  
pp. 2858-2864 ◽  
Author(s):  
Masashi Uehara ◽  
Jun Takahashi ◽  
Shota Ikegami ◽  
Shugo Kuraishi ◽  
Toshimasa Futatsugi ◽  
...  


2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.



Sign in / Sign up

Export Citation Format

Share Document