Investigating the Effect of Mechanical Stimuli on Omental Mesothelium Differentiation

Author(s):  
Lucas Hofmeister ◽  
Todd Lagus ◽  
Elaine Shelton ◽  
Jon Edd ◽  
David Bader ◽  
...  

Cell sourcing for tissue engineered approaches to vascular repair is a serious issue confronting the field of cardiovascular tissue engineering. Omental mesothelium is a promising autologous cell source for vascular repair and has been used for numerous other therapies [1]. Until recently, omental mesothelium was only thought to play a paracrine role in wound healing but there is increasing evidence that omental mesothelium can undergo divergent terminal differentiation to reparative vasculogenic cell types including: endothelial cells, fibroblasts, or vascular smooth muscle cells.

2007 ◽  
Vol 55 (S 1) ◽  
Author(s):  
D Schmidt ◽  
C Breymann ◽  
J Achermann ◽  
B Odermatt ◽  
M Genoni ◽  
...  

2019 ◽  
Vol 28 (9-10) ◽  
pp. 1106-1115 ◽  
Author(s):  
Martina Culenova ◽  
Stanislav Ziaran ◽  
Lubos Danisovic

The urethra is part of the lower urinary tract and its main role is urine voiding. Its complex histological structure makes urethral tissue prone to various injuries with complicated healing processes that often lead to scar formation. Urethral stricture disease can affect both men and women. The occurrence of this pathology is more common in men and thus are previous research has been mainly oriented on male urethra reconstruction. However, commonly used surgical techniques show unsatisfactory results because of complications. The new and progressively developing field of tissue engineering offers promising solutions, which could be applied in the urethral regeneration of both men´s and women´s urethras. The presented systematic review article offers an overview of the cells that have been used in urethral tissue engineering so far. Urine-derived stem cells show a great perspective in respect to urethral tissue engineering. They can be easily harvested and are a promising autologous cell source for the needs of tissue engineering techniques. The presented review also shows the importance of mechanical stimuli application on maturating tissue. Sufficient vascularization and elimination of stricture formation present the biggest challenges not only in customary surgical management but also in tissue-engineering approaches.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1538
Author(s):  
Lothar Koch ◽  
Andrea Deiwick ◽  
Boris Chichkov

Bioprinting is seen as a promising technique for tissue engineering, with hopes of one day being able to produce whole organs. However, thick tissue requires a functional vascular network, which naturally contains vessels of various sizes, down to capillaries of ~10 µm in diameter, often spaced less than 200 µm apart. If such thick tissues are to be printed, the vasculature would likely need to be printed at the same time, including the capillaries. While there are many approaches in tissue engineering to produce larger vessels in a defined manner, the small capillaries usually arise only in random patterns by sprouting from the larger vessels or from randomly distributed endothelial cells. Here, we investigated whether the small capillaries could also be printed in predefined patterns. For this purpose, we used a laser-based bioprinting technique that allows for the combination of high resolution and high cell density. Our aim was to achieve the formation of closed tubular structures with lumina by laser-printed endothelial cells along the printed patterns on a surface and in bioprinted tissue. This study shows that such capillaries are directly printable; however, persistence of the printed tubular structures was achieved only in tissue with external stimulation by other cell types.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Chenlong Yi ◽  
Weihua Wu ◽  
Dong Zheng ◽  
Guangying Peng ◽  
Haoyue Huang ◽  
...  

AbstractWound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are a well-known family of calcium-dependent cysteine proteases that regulate several processes, including cellular adhesion, proliferation, and migration, as well as inflammation and angiogenesis. CAPNS1, the common regulatory subunit of Calpain-1 and 2, is indispensable for catalytic subunit stabilization and activity. Calpain inhibition has been shown to reduce organ damage in various disease models. Here, we report that endothelial calpain-1/2 is crucially involved in skin wound healing. Using a mouse genetic model where Capns1 is deleted only in endothelial cells, we showed that calpain-1/2 disruption is associated with reduced injury-activated inflammation, reduced CD31+ blood vessel density, and delayed wound healing. Moreover, in cultured HUVECs, inhibition of calpain reduced TNF-α-induced proliferation, migration, and tube formation. Deletion of Capns1 was associated with elevated levels of IκB and downregulation of β-catenin expression in endothelial cells. These observations delineate a novel mechanistic role for calpain in the crosstalk between inflammation and angiogenesis during skin repair.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1045 ◽  
Author(s):  
George A. Truskey

Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli.


Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1345-1352 ◽  
Author(s):  
Donna Nichol ◽  
Heidi Stuhlmann

Abstract EGFL7 is a secreted angiogenic factor that is highly conserved in vertebrates. Most secreted angiogenic signaling molecules, including VEGF and fibroblast growth factor-2, are mainly expressed by nonendothelial cell types such as fibroblasts. In contrast, EGFL7 is unique because it is almost exclusively expressed by and acts on endothelial cells. Egfl7 expression is highest when the endothelium is in an active, proliferating state. This factor acts as a chemoattractant for endothelial cells and binds to components of the extracellular matrix. In vivo, Egfl7 is important for regulating tubulogenesis in zebrafish and for controlling vascular patterning and integrity in mice. Its function in blood vessel development is mediated, at least in part, through modulation of Notch signaling. In this review, we summarize the findings that support a role for Egfl7 in developmental and postnatal angiogenesis and describe the EGFL7-signaling pathways that underlie these processes. In addition, we discuss a potential role for EGFL7 in vascular repair and its possible use as a therapeutic target for treatment of hypoxia-induced injury. Finally, we consider EGFL7 action during tumorigenesis and its potential as an antiangiogenic agent.


2008 ◽  
Vol 187 (4) ◽  
pp. 263-274 ◽  
Author(s):  
Sepideh Heydarkhan-Hagvall ◽  
Katja Schenke-Layland ◽  
Jin Q. Yang ◽  
Sanaz Heydarkhan ◽  
Yuhuan Xu ◽  
...  

2006 ◽  
Vol 78A (2) ◽  
pp. 383-393 ◽  
Author(s):  
Danielle E. Johnston ◽  
Derek R. Boughner ◽  
Massimo Cimini ◽  
Kem A. Rogers

Author(s):  
Eric K. N. Gähwiler ◽  
Sarah E. Motta ◽  
Marcy Martin ◽  
Bramasta Nugraha ◽  
Simon P. Hoerstrup ◽  
...  

Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.


Sign in / Sign up

Export Citation Format

Share Document