Solar Ice-Makers Powered by Photovoltaic Cells in Barbados

Author(s):  
Oliver StC. Headley ◽  
William Hinds

Abstract Since incident solar radiation and cooling demand are in phase for most of the day at Caribbean sites, and between 4 and 7 kWh/m2 of solar energy is available virtually every day, solar cooling makes sense. A solar ice maker with a capacity of 50 lbs (22.7 kg) of ice per day was operated at CERMES, UWI, Barbados, for six months using 1.1kWp of BP Solar photovoltaic (PV) panels. This was a pilot study for a full scale, one-tonne-per-day solar ice maker at the fishing village of Skeete’s Bay on the southeast coast of Barbados at a new fishing complex. The Skeete’s Bay solar PV ice maker system uses 148 BP Solar 275F solar PV modules with a maximum output of 4.75A and 17.0V. These are wired in series-parallel to form an array with a nominal output of 11,100W (48V at 231A). This power is directed into a battery bank of twenty four12V, 200Ah (100hour rate) lead acid batteries. Two Trace SW4048 inverters power two Scotsman model 1200AE-32A flake ice machines, each producing 1170 lbs (531kg) per day and feeding into a common storage bin of 4.1m3.

Author(s):  
Santosh Kumar Singh ◽  
Anurag Singh Yadav ◽  
Ashutosh Srivastava ◽  
Amarjeet Singh

In this paper, a detailed study is carried out on the solar photovoltaic (PV) array topologies under various shading patterns. The aim of this study is to investigate the mismatch effect losses in PV modules for non uniform irradiations. The shading causes not only power losses, but also non-linearity of P-V characteristics. Under partial shaded conditions, the P-V and I-V characteristics exhibit extreme non-linearity along with multiple load maxima. In this paper, the investigations of the optimal layout of PV modules in a PV array are worked out to provide maximum output power under various shaded conditions. Three type of solar PV array topologies e.g. Series-parallel (SP), Total cross tied (TCT) and Bridge link (BL) are considered for various typesof shaded patterns. The modeling of solar PV array for various types of topologies is done in MATLAB/Simulink environment. The extensive results have been taken on these topologies for partial shading patterns and analyzed, which proves the TCT topology performance is better as compared to other topologies for most of the shading patterns.


Author(s):  
Santosh Kumar Singh ◽  
Anurag Singh Yadav ◽  
Ashutosh Srivastava ◽  
Amarjeet Singh

In this paper, a detailed study is carried out on the solar photovoltaic (PV) array topologies under various shading patterns. The aim of this study is to investigate the mismatch effect losses in PV modules for non uniform irradiations. The shading causes not only power losses, but also non-linearity of P-V characteristics. Under partial shaded conditions, the P-V and I-V characteristics exhibit extreme non-linearity along with multiple load maxima. In this paper, the investigations of the optimal layout of PV modules in a PV array are worked out to provide maximum output power under various shaded conditions. Three type of solar PV array topologies e.g. Series-parallel (SP), Total cross tied (TCT) and Bridge link (BL) are considered for various types of shaded patterns. The modeling of solar PV array for various types oopologies is done in MATLAB/Simulink environment. The extensive results have been taken on these topologies for partial shading patterns and analyzed, which proves the TCT topology performance is better as compared to other topologies for most of the shading patterns.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


2021 ◽  
pp. 44-52
Author(s):  
R.R. Vardanyan ◽  
N.K. Badalyan

At present, the use of solar photovoltaic (PV) modules plays an important role in the field of utilization of solar energy and transformation of this energy into electricity. The main characteristic of PV modules is the work efficiency. It strongly depends on external influences such as the degree of contamination on the glass surface and the operating temperature of the PV modules. Accumulation of dust particles on the surface of PV modules has a very negative effect on their efficiency. At high ambient temperatures, solar PV modules heat up, and the efficiency of modules is reduced. This problem is very substantial for the countries with high temperature conditions and dusty climate. In this paper, the influence of dust and temperature on the efficiency of solar PV modules is investigated. The new-type economically viable system for cleaning and cooling PV modules is used during the experiments. The conducted experimental studies under actual operating conditions during the rainiest period of the year in Yerevan, have shown that due to the cleaning of dust, the efficiency of PV modules is increasing on average by 6.7%. Due to rapid cooling by water in two minutes, the efficiency of PV modules is increased by 2.5%. To improve the operation efficiency, the PV modules must be cooled periodically, taking into consideration the quantity of the consumed water in order to get the maximal economic effect.


Author(s):  
Brian P. Dougherty ◽  
A. Hunter Fanney

Abstract The solar photovoltaic (PV) industry continues to make progress in increasing the efficiency while reducing the manufacturing costs of PV cells. Economies of scale are being realized as manufacturers expand their production capabilities. Products are commercially available that integrate photovoltaic cells within building façade, fenestration, and roofing components. Legislation and incentive programs by government and commercial entities are supporting both reduced first costs and greater rates of return. The combination of factors support improved cost-effectiveness. As this trend continues, more options for using PV become possible. One such application is a stand-alone, PV-direct, solar water heating application. Solar water heating can be effectively accomplished by directly using the DC power production from solar photovoltaic modules. A simple controller having multiple power relays connects the PV modules with different combinations of in-tank resistive elements. The controller actively changes the resistive combination so that the photovoltaic modules generate power at or near their maximum output. The technology, which has been patented and licensed, is applicable to configurations that use a single water heater and to two water heaters that are piped in series. Prototypes using both tank configurations have been in operation at four field sites. This paper emphasizes the single-tank application and the field results from installations in Maryland and Florida.


2003 ◽  
Vol 125 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Brian P. Dougherty ◽  
A. Hunter Fanney

The solar photovoltaic (PV) industry continues to make progress in increasing the efficiency while reducing the manufacturing costs of PV cells. Economies of scale are being realized as manufacturers expand their production capabilities. Products are commercially available that integrate photovoltaic cells within building fac¸ade, fenestration, and roofing components. Legislation and incentive programs by government and commercial entities are supporting both reduced first costs and greater rates of return. The combination of factors support improved cost-effectiveness. As this trend continues, more options for using PV become possible. One such application is a stand-alone, PV-direct, solar water heating application. Solar water heating can be effectively accomplished by directly using the DC power production from solar photovoltaic modules. A simple controller having multiple power relays connects the PV modules with different combinations of in-tank resistive elements. The controller actively changes the resistive combination so that the photovoltaic modules generate power at or near their maximum output. The technology, which has been patented, is applicable to configurations that use a single water heater and to two water heaters that are piped in series. Prototypes using both tank configurations were monitored at four field sites. This paper emphasizes the single-tank application and the field results from installations in Maryland and Florida.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Chayut Tubniyom ◽  
Rongrit Chatthaworn ◽  
Amnart Suksri ◽  
Tanakorn Wongwuttanasatian

Configurations of photovoltaic (PV) modules, such as series-parallel (SP), bridge-linked (BL), and total cross-tied (TCT) configurations, always utilize a number of connecting switches. In a simulation, the ideal switch with no loss is used to optimize the reconfiguration method for a solar PV array. However, in practice, the switches are non-ideal, causing losses and resulting in a decrease in the total output power of the PV array. In this work, MATLAB/Simulink (R2016a) was employed to simulate nine PV modules linked in a 3 × 3 array, and they were reconfigured using series-parallel (SP), bridge-linked (BL), and total cross-tied (TCT) configurations for both ideal and non-ideal switch cases. It was not surprising that non-ideal switches deteriorated the output power compared with ideal cases. Then, the minimization of losses (ML) configuration was proposed by minimizing the number of switches to give the highest output power. A 5% higher power output was set as the criterion to reconfigure the PV modules when partial shading occurred. The results showed that if 50% or more of the area was partially shaded, reconfiguration was unnecessary. On the other hand, when the shaded area was less than 50%, reconfiguration gave a significant increase in power. Finally, the ML method had different configurations for various shading patterns, and provided better results than those of the TCT method.


Energy recovery circuit plays significant role in PV string, during different irradiance value condition of PV modules. The BBCSC circuit is the combination of buck-boost converter and switched capacitor circuit; used to eliminate bypass diodes. The main objectives of BBCSC circuit are energy recovery from the photovoltaic modules under different irradiance value condition of PV modules and the voltage of the PV string is maintained on the level generated. In this paper, artificial bee colony (ABC) optimization technique is implemented with MPPT algorithm for solar modules string with boost converter and energy recovery circuit; to improve maximum output power and voltage values during PSC. The main limitation in the conventional method is to track exact MPP under partially shaded condition (PSC) is not satisfactory and Sometimes takes local maxima as global maxima. To overcome this, a new proposed artificial bee colony (ABC) algorithm MPPT is implemented. Comparative analysis has been carried out and verified between the above of state of art methods through simulation results. To valid and verify the effectiveness of the proposed BBCSC circuit, simulation results are presented in MATLAB/Simulink software.


2020 ◽  
Vol 9 (1) ◽  
pp. 7-22 ◽  
Author(s):  
Manoharan Premkumar ◽  
Chandrasekaran Kumar ◽  
Ravichandran Sowmya

This paper discusses a modified V-I relationship for the solar photovoltaic (PV) single diode based equivalent model. The model is derived from an equivalent circuit of the PV cell. A PV cell is used to convert the solar incident light to electrical energy. The PV module is derived from the group of series connected PV cells and PV array, or PV string is formed by connecting the group of series and parallel connected PV panels. The model proposed in this paper is applicable for both series and parallel connected PV string/array systems. Initially, the V-I characteristics are derived for a single PV cell, and finally, it is extended to the PV panel and, to string/array. The solar PV cell model is derived based on five parameters model which requires the data’s from the manufacturer’s data sheet. The derived PV model is precisely forecasting the P-V characteristics, V-I characteristics, open circuit voltage, short circuit current and maximum power point (MPP) for the various temperature and solar irradiation conditions. The model in this paper forecasts the required data for both polycrystalline silicon and monocrystalline silicon panels. This PV model is suitable for the PV system of any capacity. The proposed model is simulated using Matlab/Simulink for various PV array configurations, and finally, the derived model is examined in partial shading condition under the various environmental conditions to find the optimal configuration. The PV model proposed in this paper can achieve 99.5% accuracy in producing maximum output power as similar to manufacturers datasheet.©2020. CBIORE-IJRED. All rights reserved


Author(s):  
Tawseef Ahmad Wani, Et. al.

Solar electric power generating stations play a major role in meeting the growing demand for electric power. These generating stations make use of solar photovoltaic (PV) panels to perform the conversion of solar energy to electric energy. However, the solar panel output is highly unpredictable because the output is a function of number of factors; some of which are not in the control of humans like the weather conditions, and the output is also a function of the age of PV panel, dust and other debris collected on the panel, direction and angle of elevation and so on. The solar panels exhibit a low efficiency. Currently, a lot of research is going on to overcome these issues. This paper represents a review of two modern techniques used in solar photovoltaic systems which enhance the extraction of maximum output power in an efficient manner. The Artificial Intelligence Based MPPT Techniques for PV Applications, and, a Forecasting System of Solar PV Power Generation using Wavelet Decomposition and Bias- compensated Random Forest are reviewed and compared in this paper.


Sign in / Sign up

Export Citation Format

Share Document