Composite Synthetic Membranes Containing Native and Engineered Transport Proteins

Author(s):  
John Cuppoletti

Our membrane transport protein laboratory has worked with material scientists, computational chemists and electrical and mechanical engineers to design bioactuators and sensing devices. The group has demonstrated that it is possible to produce materials composed native and engineered biological transport proteins in a variety of synthetic porous and solid materials. Biological transport proteins found in nature include pumps, which use energy to produce gradients of solutes, ion channels, which dissipate ion gradients, and a variety of carriers which can either transport substances down gradients or couple the uphill movement of substances to the dissipation of gradients. More than one type of protein can be reconstituted into the membranes to allow coupling of processes such as forming concentration gradients with ion pumps and dissipating them with an ion channel. Similarly, ion pumps can provide ion gradients to allow the co-transport of another substance. These systems are relevant to bioactuation. An example of a bioactuator that has recently been developed in the laboratory was based on a sucrose-proton exchanger coupled to a proton pump driven by ATP. When coupled together, the net reaction across the synthetic membrane was ATP driven sucrose transport across a flexible membrane across a closed space. As sucrose was transported, net flow of water occurred, causing pressure and deformation of the membrane. Transporters are regulated in nature. These proteins are sensitive to voltage, pH, sensitivity to a large variety of ligands and they can be modified to gain or lose these responses. Examples of sensors include ligand gated ion channels reconstituted on solid and permeable supports. Such sensors have value as high throughput screening devices for drug screening. Other sensors that have been developed in the laboratory include sensors for membrane active bacterial products such as the anthrax pore protein. These materials can be self assembled or manufactured by simple techniques, allowing the components to be stored in a stable form for years before (self) assembly on demand. The components can be modified at the atomic level, and are composed of nanostructures. Ranges of sizes of structures using these components range from the microscopic to macroscopic scale. The transport proteins can be obtained from natural sources or can be produced by recombinant methods from the genomes of all kingdoms including archea, bacteria and eukaryotes. For example, the laboratory is currently studying an ion channel from a thermophile from deep sea vents which has a growth optimum of 90 degrees centigrade, and has membrane transport proteins with very high temperature stability. The transport proteins can also be genetically modified to produce new properties such as activation by different ligands or transport of new substances such as therapeutic agents. The structures of many of these proteins are known, allowing computational chemists to help understand and predict the transport processes and to guide the engineering of new properties for the transport proteins and the composite membranes. Supported by DARPA and USARMY MURI Award and AFOSR.

2004 ◽  
Vol 28 (4) ◽  
pp. 143-154 ◽  
Author(s):  
George R. Dubyak

The steady-state maintenance of highly asymmetric concentrations of the major inorganic cations and anions is a major function of both plasma membranes and the membranes of intracellular organelles. Homeostatic regulation of these ionic gradients is critical for most functions. Due to their charge, the movements of ions across biological membranes necessarily involves facilitation by intrinsic membrane transport proteins. The functional characterization and categorization of membrane transport proteins was a major focus of cell physiological research from the 1950s through the 1980s. On the basis of these functional analyses, ion transport proteins were broadly divided into two classes: channels and carrier-type transporters (which include exchangers, cotransporters, and ATP-driven ion pumps). Beginning in the mid-1980s, these functional analyses of ion transport and homeostasis were complemented by the cloning of genes encoding many ion channels and transporter proteins. Comparison of the predicted primary amino acid sequences and structures of functionally similar ion transport proteins facilitated their grouping within families and superfamilies of structurally related membrane proteins. Postgenomics research in ion transport biology increasingly involves two powerful approaches. One involves elucidation of the molecular structures, at the atomic level in some cases, of model ion transport proteins. The second uses the tools of cell biology to explore the cell-specific function or subcellular localization of ion transport proteins. This review will describe how these approaches have provided new, and sometimes surprising, insights regarding four major questions in current ion transporter research. 1) What are the fundamental differences between ion channels and ion transporters? 2) How does the interaction of an ion transport protein with so-called adapter proteins affect its subcellular localization or regulation by various intracellular signal transduction pathways? 3) How does the specific lipid composition of the local membrane microenvironment modulate the function of an ion transport protein? 4) How can the basic functional properties of a ubiquitously expressed ion transport protein vary depending on the cell type in which it is expressed?


1993 ◽  
Vol 26 (1) ◽  
pp. 1-25 ◽  
Author(s):  
E. Bamberg ◽  
H.-J. Butt ◽  
A. Eisenrauch ◽  
K. Fendler

Ion pumps create ion gradients across cell membranes while consuming light energy or chemical energy. The ion gradients are used by the corresponding cell types for passive-ion transport via ion channels or carriers or for accumulation of nutrients like sugar or amino acids via cotransport systems or antiporters.


2008 ◽  
Vol 88 (2) ◽  
pp. 351-387 ◽  
Author(s):  
Tsung-Yu Chen ◽  
Tzyh-Chang Hwang

CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels play important roles in Cl− transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl− channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.


Aerospace ◽  
2005 ◽  
Author(s):  
Chris Homison ◽  
Lisa Mauck Weiland

Work is underway to develop high energy density active materials based upon biological processes. These materials utilize the controlled transport of charge and fluid across a selectively-permeable membrane to achieve bulk deformation in a process referred to in the plant kingdom as nastic movements. The nastic material being developed consists of synthetic membranes containing biological ion pumps, ion channels, and ion exchangers surrounding fluid-filled cavities embedded within a polymer matrix. In this paper the formulation of a biological transport model and its coupling with a hyperelastic finite element model of the polymer matrix is discussed. The transport model includes contributions from ion pumps, ion exchangers, solvent flux, and ion channels. This work will form the basis for a feedback loop in material synthesis efforts. The goal of these studies is to determine the relative importance of the various parameters associated with both the polymer matrix and the biological transport components.


2001 ◽  
Vol 34 (4) ◽  
pp. 473-561 ◽  
Author(s):  
D. Peter Tieleman ◽  
Phil C. Biggin ◽  
Graham R. Smith ◽  
Mark S. P. Sansom

1. Introduction 4751.1 Ion channels 4751.1.1 Gramicidin 4761.1.2 Helix bundle channels 4771.1.3 K channels 4801.1.4 Porins 4831.1.5 Nicotinic acetylcholine receptor 4831.1.6 Physiological properties 4831.2 Simulations 4841.2.1 Atomistic versus mean-field simulations 4842. Atomistic simulations 4852.1 Modelling of ion-interaction parameters 4852.1.1 Interatomic distances and the problem of ionic radii 4862.1.2 Solvation energy 4872.1.3 Hydration shells and coordination numbers 4892.1.4 Parameters in common use and transferability 4912.1.5 Summary 4912.2 Water in pores versus bulk 4912.2.1 Simple pore models 4942.2.2 gA 4952.2.3 Alm 4962.2.4 LS36 (and LS24) 4962.2.5 Nicotinic receptor M2δ5 4972.2.6 Influenza A M2 4972.2.7 K channels 4972.2.8 nAChR 4982.2.9 Porins 4982.2.10 Relevance 4992.2.11 Problems with simulations 5012.3 Dynamics of ions in pores 5032.3.1 Simple pore models 5032.3.2 Helix bundles 5042.3.3 gA and KcsA 5052.4 Energetics of permeation and ion selectivity 5092.4.1 Potential and free energy profiles 5092.4.2 gA 5102.4.3 α-Helix bundles 5112.4.4 KcsA 5122.4.5 Ion selectivity 5142.4.6 Problems of estimating energetic profiles 5152.5 Conformational changes 5162.5.1 gA 5162.5.2 Alm and LS3 5162.5.3 KcsA 5172.6 Protonation states 5233. Coarse-grained simulations 5243.1 Introduction 5243.1.1 Predicting conductance magnitudes 5253.2 Electro-diffusion: the Nernst–Planck approach 5263.2.1 Calculating the potential profile from Poisson and PB theory 5283.2.2 Calculating the potential profile from BD simulations 5303.2.3 Combining Nernst–Planck and Poisson: PNP 5303.3 Beyond PNP 5323.4 BD simulations 5323.4.1 Basic theory in ion channels 5323.4.2 Incorporating the environment 5333.5 Applications 5353.5.1 Model systems 5353.5.1.1 Solving the Poisson and PB equation for channel-like geometries 5353.5.1.2 Comparing PB, PNP and BD 5363.5.2 Applications to known structures 5373.5.2.1 gA 5373.5.2.2 Porin 5393.5.2.3 LS3 5403.5.2.4 Alm 5423.5.2.5 nAChR 5423.5.2.6 KcsA 5433.6 pKa calculations 5433.7 Selectivity 5443.7.1 Anion/cation selectivity 5453.7.2 Monovalent/divalent ion selectivity 5454. Problems 5464.1 Atomistic simulations 5464.1.1 Problems 5464.1.2 Parameters 5484.2 BD 5494.3 Mean-field simulations 5495. Conclusions 5505.1 Progress 5505.2 The future 5506. Acknowledgements 5517. References 551Ion channels are proteins that form ‘holes’ in membranes through which selected ions move passively down their electrochemical gradients. The ions move quickly, at (nearly) diffusion limited rates (ca. 107 ions s−1 per channel). Ion channels are central to many properties of cell membranes. Traditionally they have been the concern of neuroscientists, as they control the electrical properties of the membranes of excitable cells (neurones, muscle; Hille, 1992). However, it is evident that ion channels are present in many types of cell, not all of which are electrically excitable, from diverse organisms, including plants, bacteria and viruses (where they are involved in functions such as cell homeostasis) in addition to animals. Thus ion channels are of general cell biological importance. They are also of biomedical interest, as several dizeases (‘channelopathies’) have been described which are caused by changes in properties of a specific ion channel (Ashcroft, 2000). Moreover, passive diffusion channels for substances other than ions are common (porins, aquaporins), as are active membrane transport processes coupled to ion gradients or ATP hydrolysis. An understanding of ion channels may also provide a gateway to understanding these processes.


2021 ◽  
Vol 120 (3) ◽  
pp. 190a
Author(s):  
Meng-Yin Li ◽  
Xue-yuan Wu ◽  
Yi-Lun Ying ◽  
Yi-Tao Long

2017 ◽  
Vol 5 (12) ◽  
pp. e13290 ◽  
Author(s):  
Anne Hahn ◽  
Johannes Faulhaber ◽  
Lalita Srisawang ◽  
Andreas Stortz ◽  
Johanna J Salomon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document