Coupled Transport/Hyperelastic Model for High Nastic Materials

Aerospace ◽  
2005 ◽  
Author(s):  
Chris Homison ◽  
Lisa Mauck Weiland

Work is underway to develop high energy density active materials based upon biological processes. These materials utilize the controlled transport of charge and fluid across a selectively-permeable membrane to achieve bulk deformation in a process referred to in the plant kingdom as nastic movements. The nastic material being developed consists of synthetic membranes containing biological ion pumps, ion channels, and ion exchangers surrounding fluid-filled cavities embedded within a polymer matrix. In this paper the formulation of a biological transport model and its coupling with a hyperelastic finite element model of the polymer matrix is discussed. The transport model includes contributions from ion pumps, ion exchangers, solvent flux, and ion channels. This work will form the basis for a feedback loop in material synthesis efforts. The goal of these studies is to determine the relative importance of the various parameters associated with both the polymer matrix and the biological transport components.

Author(s):  
Eric Freeman ◽  
Lisa Weiland

The focus of this research is to optimize the performance of a high energy density active material based upon biological processes. This material uses controlled transport of charge and fluid across a selectively permeable membrane to achieve bulk deformation, similar to nastic movements in the plant kingdom. The membrane utilizes biological ion pumps, ion channels, and ion exchangers surrounding a spherical inclusion in a polymer matrix. This work examines the effect of the geometry of the inclusion and the surrounding matrix on the predictions of the model.


Author(s):  
Eric Freeman ◽  
Lisa Mauck Weiland

The focus of this paper is projection of the performance of nastic actuators under conditions of variable stimulus with particular emphasis on pharmaceutical applications. The nastic actuator concept considered here employs controlled transport of charge and fluid across a selectively permeable membrane to achieve bulk deformation, similar to nastic movements in the plant kingdom. These membranes may utilize biological ion pumps, ion channels, and/or ion exchangers to transport fluid and ions and thereby expand/contract a phase separated inclusion. Studies to date have focused pH gradients or the spontaneous introduction of ATP chemical energy as the triggers for actuator response. In this effort the physics of the nastic actuator response under variable stimulus is considered. In addition, the possibility of controlled bursting of the nastic inclusions for vaccine delivery is explored.


2012 ◽  
Vol 23 (12) ◽  
pp. 1395-1403 ◽  
Author(s):  
Eric Freeman ◽  
Lisa Weiland

This study focuses on the development of a novel high-energy density actuator based on biomimicry principles. The system proposed here draws inspiration from plant motor cells and provides proof of concept for a highly configurable reversible osmotic actuator through the application of voltage-gated ion channels and action potentials. Computational methods are employed to measure the effectiveness of the proposed system in comparison to similar novel actuators.


2020 ◽  
Vol 1 (4) ◽  
pp. 680-688 ◽  
Author(s):  
Prateek ◽  
Shahil Siddiqui ◽  
Ritamay Bhunia ◽  
Narendra Singh ◽  
Ashish Garg ◽  
...  

In this work, we have studied the role of a linker across the interface in a multi-layered polymer nanocomposite-based capacitor using barium titanate (BT) nanofibers (NFs) as nanofillers and polyvinylidene fluoride (PVDF) as the polymer matrix.


Author(s):  
John Cuppoletti

Our membrane transport protein laboratory has worked with material scientists, computational chemists and electrical and mechanical engineers to design bioactuators and sensing devices. The group has demonstrated that it is possible to produce materials composed native and engineered biological transport proteins in a variety of synthetic porous and solid materials. Biological transport proteins found in nature include pumps, which use energy to produce gradients of solutes, ion channels, which dissipate ion gradients, and a variety of carriers which can either transport substances down gradients or couple the uphill movement of substances to the dissipation of gradients. More than one type of protein can be reconstituted into the membranes to allow coupling of processes such as forming concentration gradients with ion pumps and dissipating them with an ion channel. Similarly, ion pumps can provide ion gradients to allow the co-transport of another substance. These systems are relevant to bioactuation. An example of a bioactuator that has recently been developed in the laboratory was based on a sucrose-proton exchanger coupled to a proton pump driven by ATP. When coupled together, the net reaction across the synthetic membrane was ATP driven sucrose transport across a flexible membrane across a closed space. As sucrose was transported, net flow of water occurred, causing pressure and deformation of the membrane. Transporters are regulated in nature. These proteins are sensitive to voltage, pH, sensitivity to a large variety of ligands and they can be modified to gain or lose these responses. Examples of sensors include ligand gated ion channels reconstituted on solid and permeable supports. Such sensors have value as high throughput screening devices for drug screening. Other sensors that have been developed in the laboratory include sensors for membrane active bacterial products such as the anthrax pore protein. These materials can be self assembled or manufactured by simple techniques, allowing the components to be stored in a stable form for years before (self) assembly on demand. The components can be modified at the atomic level, and are composed of nanostructures. Ranges of sizes of structures using these components range from the microscopic to macroscopic scale. The transport proteins can be obtained from natural sources or can be produced by recombinant methods from the genomes of all kingdoms including archea, bacteria and eukaryotes. For example, the laboratory is currently studying an ion channel from a thermophile from deep sea vents which has a growth optimum of 90 degrees centigrade, and has membrane transport proteins with very high temperature stability. The transport proteins can also be genetically modified to produce new properties such as activation by different ligands or transport of new substances such as therapeutic agents. The structures of many of these proteins are known, allowing computational chemists to help understand and predict the transport processes and to guide the engineering of new properties for the transport proteins and the composite membranes. Supported by DARPA and USARMY MURI Award and AFOSR.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Miguel Mendoza ◽  
Md Ashiqur Rahaman Khan ◽  
Mohammad Arif Ishtiaque Shuvo ◽  
Alberto Guerrero ◽  
Yirong Lin

There is an increasing demand to improve the energy density of dielectric capacitors for satisfying the next generation material systems. One effective approach is to embed high dielectric constant inclusions such as lead zirconia titanate in polymer matrix. However, with the increasing concerns on environmental safety and biocompatibility, the need to expel lead (Pb) from modern electronics has been receiving more attention. Using high aspect ratio dielectric inclusions such as nanowires could lead to further enhancement of energy density. Therefore, this paper focuses on the development of a lead-free nanowire reinforced polymer matrix capacitor for energy storage application. Lead-free sodium niobate nanowires (NaNbO3) were synthesized using hydrothermal method, followed by mixing them with polyvinylidene fluoride (PVDF) matrix using a solution-casting method for nanocomposites fabrication. Capacitance and breakdown strength of the samples were measured to determine the energy density. The energy density of NaNbO3/PVDF composites was also compared with that of lead-containing (PbTiO3/PVDF) nanocomposites and previously developed Pb()O3/PVDF composites to show the feasibility of replacing lead-containing materials. The energy density of NaNbO3/PVDF capacitor is comparable to those of lead-containing ones, indicating the possibility of expelling lead from high-energy density dielectric capacitors.


Aerospace ◽  
2004 ◽  
Author(s):  
Vishnu Baba Sundaresan ◽  
Honghui Tan ◽  
Donald J. Leo ◽  
John Cuppoletti

Biological systems such as plants produce large deformations due to the conversion of chemical energy to mechanical energy. These chemomechanical energy conversions are controlled by the transport of charge and fluid across permeable membranes within the cellular structure of the biological system. In this paper we analyze the potential for using biological transport mechanisms to produce materials with controllable actuation properties. An energetics analysis is performed to quantify the relationship between the introduction of chemical energy in the form of ATP to the resulting osmotic pressure variation within an enclosed membrane. Our analysis demonstrates that pressure variations of between 5 and 15 MPa are achievable. The pressure variations are then coupled to a finite element analysis to determine the ability of organized arrays to produce extensional and bending actuation in thin membranes. Our analysis demonstrates that internal pressure variations on the order of 10 MPa can produce actuation materials with extensional energy density on the order of 100 kJ/m3 and bending energy density on the order of 10 kJ/m3.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Sign in / Sign up

Export Citation Format

Share Document