An Experimental Performance Evaluation of DC Power Generation and Power Loss in Full-Bridge Rectifier of Cantilever Type of Piezoelectric Vibration Energy Harvester

Author(s):  
Kazuhiko Adachi ◽  
Tohru Tanaka

Rotating machinery is widely used in the industrial plant. In order to ensure safety operation of the rotating machinery, vibration condition monitoring of the machinery can play a crucial role. Authors have proposed a cantilever type of vibration energy harvester for vibration condition monitoring applications of rotating machinery. Proposed energy harvester consisted of Macro-Fiber Composite (MFC). In this study, not only the DC power generation performance but also power loss in full-wave bridge rectifier of the proposed vibration energy harvester is experimentally evaluated. The maximum DC output power through 287.6(kΩ) resistor which includes instruments internal resistances obtained 109.5(μW) when subjected to vibration source input magnitude of 0.71(mm/s rms) at the resonant frequency of the harvester. The impedance matching between MFC actuators and the electrical resistive load was also effective for maximizing the DC power transfer of the vibration energy harvester. The power loss in full-wave bridge rectifier reached 13.7(μW) at the resonant frequency.

Author(s):  
Kazuhiko Adachi ◽  
Tohru Tanaka

Rotating machinery is widely used in the industrial plant, for example, power plant, chemical plant, mass-production plant and so on. In order to ensure safety operation of the rotating machinery, vibration condition monitoring of the machinery can play a crucial role. Authors have proposed a cantilever type of vibration energy harvester for vibration condition monitoring applications of rotating machinery. Proposed energy harvester consisted of Macro-Fiber Composite (MFC) which is flexible and durable piezocomposite type actuator. The mechanical resonant frequency of the piezoelectric bimorph cantilever is tuned to the rotating speed of a typical 4-pole induction motor driven rotating machine. In this study, the power generation performance of proposed energy harvester is evaluated through numerical simulations as well as experiment when subjected to vibration source input magnitude of 0.71(mm/s rms) at the resonant frequency of the harvester by using the electrodynamic shaker.


Author(s):  
Kazuhiko Adachi ◽  
Tatsuya Sakamoto

In the authors’ previous study, the vibration energy harvester of the piezoelectric bimorph cantilever type was proposed for vibration condition monitoring applications of industrial rotating machinery. According to an ISO standard, vibration level of newly commissioned class I rotating machinery is under 0.71mm/sec rms in all frequency range. Authors assumed that the typical casing or pedestal vibration amplitude of the rotating machinery was 0.71 mm/sec rms and this low intensity excitation condition was the input for experimental evaluation of the voltage generation performance of the piezocomposit vibration energy harvester. The vibration energy harvester consists of the surface bonded two Macro-Fiber Composites (MFCs). In this study, energy transfer efficiency was derived from the system energy balance during the natural period of the proposed vibration energy harvester. Energy balance equations were successfully obtained from the governing equations of the piezoelectrically coupled electromechanical system. The maximum AC power through 114.3 Kilo-Ohm resistor which includes instrument internal resistances experimentally obtained 242.07 microwatt when subjected to vibration source input magnitude of 0.71 mm/s rms at the resonant frequency of the harvester (29.42 Hz). The impedance matching between MFCs and the electrical resistive load was effective for maximizing AC power transfer of the vibration energy harvester. Estimated energy transfer from mechanical system to electrical system shows the agreement with the experimentally evaluated generating power during the natural period of the vibration energy harvester with about 3% difference. Estimated energy transfer efficiency was about 30% for different excitation magnitudes: 0.71, 0.568 and 0.355 mm/sec rms.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.


Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices and wireless sensors due to high power density, easy integration, simple configuration and other outstanding features. Among piezoelectric vibration energy harvesting structures, cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model of mesoscale piezoelectric energy harvester is proposed, which focuses on the multi-directional vibration collection and low resonant frequency. To verify the output performances of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit with high power collection rate is adopted as collection system. This harvester is beneficial to the further application of devices working with continuous vibrations and low power requirements.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2710 ◽  
Author(s):  
Zhuang Lu ◽  
Quan Wen ◽  
Xianming He ◽  
Zhiyu Wen

The performance of vibration energy harvesters is usually restricted by their frequency bandwidth. The double-clamped beam with strong natural nonlinearity is a simple way that can effectively expand the frequency bandwidth of the vibration energy harvester. In this article, a nonlinear electromagnetic vibration energy harvester with monostable double-clamped beam was proposed. A systematic analysis was conducted and a distributed parameter analytical model was established. On this basis, the output performance was estimated by the analytical model. It was found that the nonlinearity of the double-clamped beam had little influence on the maximum output, while broadening the frequency bandwidth. In addition, the resonant frequency, the frequency bandwidth, and the maximum output all increased following the increase of excitation level. Furthermore, the resonant frequency varies with the load changes, due to the electromagnetic damping, so the maximum output power should be gained at its optimum load and frequency. To experimentally verify the established analytical model, an electromagnetic vibration energy harvester demonstrator was built. The prediction by the analytical model was confirmed by the experiment. As a result, the open-circuit voltage, the average power and the frequency bandwidth of the electromagnetic vibration energy harvester can reach up to 3.6 V, 1.78 mW, and 11 Hz, respectively, under only 1 G acceleration, which shows a prospect for the application of the electromagnetic vibration energy harvester based on a double-clamped beam.


Sign in / Sign up

Export Citation Format

Share Document