Power Savings of a Variable Recruitment Hydraulic Artificial Muscle Actuation Scheme

Author(s):  
Michael Meller ◽  
Ephrahim Garcia

We investigate utilizing inelastic bladder hydraulic artificial muscle actuators as muscle fibers. These muscle fibers are then grouped together to form a variable recruitment artificial muscle bundle. This muscle bundle configuration is biologically inspired, where in skeletal muscle, different numbers of motor units are recruited to match the load by increasing the number of motor neurons firing. This results in extremely efficient locomotion in nature. It is desired to use a similar methodology to increase the actuation efficiency of valve-controlled hydraulic systems. Such hydraulic control systems induce a pressure drop in the valves to throttle the flow to the cylinder actuators. Using the valves in this manner is simple but very inefficient. Hence, this paper presents selectively recruiting different numbers of the hydraulic artificial muscle fibers to match a required loading scenario similar to our bipedal robot. By using fewer of the muscle fibers to match a smaller load, less power is consumed from the hydraulic power unit because instead of inducing a pressure drop, the volume of fluid delivered is decreased. The potential efficiency improvements associated with this actuation scheme is compared to a traditional hydraulic system with differential cylinders.

Physiology ◽  
2018 ◽  
Vol 33 (2) ◽  
pp. 113-126 ◽  
Author(s):  
Matthew J. Fogarty ◽  
Carlos B. Mantilla ◽  
Gary C. Sieck

Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 42
Author(s):  
Jeong Yong Kim ◽  
Nicholas Mazzoleni ◽  
Matthew Bryant

Fluidic artificial muscles (FAMs), also known as McKibben actuators, are a class of fiber-reinforced soft actuators that can be pneumatically or hydraulically pressurized to produce muscle-like contraction and force generation. When multiple FAMs are bundled together in parallel and selectively pressurized, they can act as a multi-chambered actuator with bioinspired variable recruitment capability. The variable recruitment bundle consists of motor units (MUs)—groups of one of more FAMs—that are independently pressurized depending on the force demand, similar to how groups of muscle fibers are sequentially recruited in biological muscles. As the active FAMs contract, the inactive/low-pressure units are compressed, causing them to buckle outward, which increases the spatial envelope of the actuator. Additionally, a FAM compressed past its individual free strain applies a force that opposes the overall force output of active FAMs. In this paper, we propose a model to quantify this resistive force observed in inactive and low-pressure FAMs and study its implications on the performance of a variable recruitment bundle. The resistive force behavior is divided into post-buckling and post-collapse regions and a piecewise model is devised. An empirically-based correction method is proposed to improve the model to fit experimental data. Analysis of a bundle with resistive effects reveals a phenomenon, unique to variable recruitment bundles, defined as free strain gradient reversal.


2019 ◽  
Author(s):  
Saul Bello-Rojas ◽  
Ana E. Istrate ◽  
Sandeep Kishore ◽  
David L. McLean

AbstractSpinal motor neurons and the peripheral muscle fibers they innervate form discrete motor units that execute movements of varying force and speed. Subsets of spinal motor neurons also exhibit axon collaterals that influence motor output centrally. Here, we have used in vivo imaging to anatomically characterize the central and peripheral innervation patterns of axial motor units in larval zebrafish. Using early born ‘primary’ motor neurons and their division of epaxial and hypaxial muscle into four distinct quadrants as a reference, we define three distinct types of later born ‘secondary’ motor units. The largest are ‘m-type’ units, which innervate deeper fast-twitch muscle fibers via medial nerves. Next in size are ‘ms-type’ secondaries, which innervate superficial fast-twitch and slow fibers via medial and septal nerves, followed by ‘s-type’ units, which exclusively innervate superficial slow muscle fibers via septal nerves. All types of secondaries innervate up to four axial quadrants. Central axon collaterals are found in subsets of primaries based on soma position and predominantly in secondary fast-twitch units (m, ms) with increasing likelihood based on number of quadrants innervated. Collaterals are labeled by synaptophysin-tagged fluorescent proteins, but not PSD95, consistent with their output function. Also, PSD95 dendrite labeling reveals that larger motor units receive more excitatory synaptic input. Collaterals are largely restricted to the neuropil, however perisomatic connections are observed between motor units. These observations suggest that recurrent interactions are dominated by motor neurons recruited during stronger movements and set the stage for functional investigations of recurrent motor circuitry in larval zebrafish.


Author(s):  
Jeong Yong Kim ◽  
Nicholas Mazzoleni ◽  
Dheeraj Vemula ◽  
Matthew Bryant

Abstract Variable recruitment fluidic artificial muscle (FAM) bundles consist of multiple FAMs arranged in motor units that are sequentially activated as load demand increases. The conventional configuration of a variable recruitment FAM bundle requires a valve for each motor unit, which is referred to as a multi-valve system (MVS). As each motor unit within the bundle is selectively recruited, this configuration is highly adaptable and flexible in performance. However, as the number of motor units increases, the valve network can become complex and heavy in its design. To decrease complexity and weight, the concept of an orderly recruitment valve (ORV) has been proposed and analyzed. The ORV allows multiple motor units to be controlled using a single valve that recruits and pressurizes all motor units. The ORV concept consists of a spool valve with multiple outlet ports and a motor unit connected to each port. A linear actuator controls the position of the spool, allowing fluid flow into each port in succession. Naturally, de-recruitment happens in reverse order. The objective of the ORV is to strike a balance between performance and compactness of design. The purpose of this paper is to present analytical modeling that can be used to understand the behavior and performance of an ORV system and develop an experimental proof-of-concept that illustrates the ORV operation in hardware. A pneumatic ORV prototype was constructed and used to actuate two FAMs sequentially, each representing a motor unit. The results demonstrate the ORV as a compact system with which a variable recruitment bundle with multiple recruitment states can be controlled.


Author(s):  
Simone Mosole ◽  
Ugo Carraro ◽  
Helmut Kern ◽  
Stefan Loefler ◽  
Sandra Zampieri

Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. Trial Registration: ClinicalTrials.gov: NCT01679977.


2021 ◽  
Author(s):  
Yaron Meirovitch ◽  
Kai Kang ◽  
Ryan W Draft ◽  
Elisa C Pavarino ◽  
Maria Fernanda Henao Echeverri ◽  
...  

The connections between motor neurons and muscle fibers are dramatically reorganized in early postnatal life. This work attempts to better understand this synaptic rewiring by using a connectomic approach, i.e., tracing out all the connections between motor neurons and muscle fibers, at successive ages in a small mouse muscle. We reconstructed 31 partial-complete neuromuscular connectomes, using serial section scanning electron microscopy in a neonatal mouse and Brainbow-based and XFP-based fluorescent reconstructions in older animals. Our data included a total of more than 6000 neuromuscular junctions (NMJs), including complete connectomes from one newborn, seven developmental ages (P6-P9), and two adults. Analysis confirmed the massive rewiring that takes place as axons prune their motor units but add more synaptic areas at the NMJs with which they remain in contact. Interestingly, we found synaptic ordering rules that likely underlie this circuit maturation and yield the resulting adult neuromuscular pattern, as manifest in Henneman's size principle. In particular, by analyzing both the identities of axons sharing NMJs at developing ages and muscle fibers with multiple endplates, we found evidence suggesting an activity-based linear ranking of motor neurons such that neurons co-innervated the same endplates and same muscle fibers (if there were more than one endplate) when the axons were similar in activity and hence rank. In addition, this ranking provided a means for understanding action at a distance in which the activity at one neuromuscular junction can impact the fate of the axons at another junction at a different site on the same muscle fiber. These activity-dependent mechanisms provide insight into the means by which timing of activity among different axons innervating the same population of cells, that start out with nearly all-to-all connectivity, can produce a well-organized system of axons, a system that is necessary for the recruitment order of neurons during a graded behavior like muscle contraction.


Author(s):  
Nicholas Mazzoleni ◽  
Jeong Yong Kim ◽  
Matthew Bryant

Abstract Fluidic artificial muscles (FAMs) are a popular actuation choice due to their compliant nature and high force-to-weight ratio. Variable recruitment is a bio-inspired actuation strategy in which multiple FAMs are combined into motor units that can be pressurized sequentially according to load demand. In a traditional ‘fixed-end’ variable recruitment FAM bundle, inactive units and activated units that are past free strain will compress and buckle outward, resulting in resistive forces that reduce overall bundle force output, increase spatial envelope, and reduce operational life. This paper investigates the use of inextensible tendons as a mitigation strategy for preventing resistive forces and outward buckling of inactive and submaximally activated motor units in a variable recruitment FAM bundle. A traditional analytical fixed-end variable recruitment FAM bundle model is modified to account for tendons, and the force-strain spaces of the two configurations are compared while keeping the overall bundle length constant. Actuation efficiency for the two configurations is compared for two different cases: one case in which the radii of all FAMs within the bundle are equivalent, and one case in which the bundles are sized to consume the same amount of working fluidvolume at maximum contraction. Efficiency benefits can be found for either configuration for different locations within their shared force-strain space, so depending on the loading requirements, one configuration may be more efficient than the other. Additionally, a study is performed to quantify the increase in spatial envelope caused by the outward buckling of inactive or low-pressure motor units. It was found that at full activation of recruitment states 1, 2, and 3, the tendoned configuration has a significantly higher volumetric energy density than the fixed-end configuration, indicating that the tendoned configuration has more actuation potential for a given spatial envelope. Overall, the results show that using a resistive force mitigation strategy such as tendons can completely eliminate resistive forces, increase volumetric energy density, and increase system efficiency for certain loading cases. Thus, there is a compelling case to be made for the use of tendoned FAMs in variable recruitment bundles.


2019 ◽  
Vol 25 (28) ◽  
pp. 3005-3010
Author(s):  
Georges Samouri ◽  
Alexandre Stouffs ◽  
Lionel V. Essen ◽  
Olivier Simonet ◽  
Marc De Kock ◽  
...  

Introduction: The monitoring of the curarisation is a unique opportunity to investigate the function of the neuromuscular junction (NMJ) during cancer surgery, especially in frailty-induced and age-related sarcopenia. Method: We conducted a comprehensive literature review in PubMed, without any limit of time related to frailty, sarcopenia, age and response to neuromuscular blockers in the context of cancer surgery. Results: Several modifications appear with age: changes in cardiac output, a decrease in muscle mass and increase in body fat, the deterioration in renal and hepatic function, the plasma clearance and the volume of distribution in elderly are smaller. These changes can be exacerbated in cancer patients. We also find modifications of the NMJ: dysfunctional mitochondria, modifications in the innervation of muscle fibers and motor units, uncoupling of the excitation-contraction of muscle fibers, inflammation. : Neuromuscular blocking agents (NMBAs) compete with acetylcholine and prevent it from fixing itself on its receptor. Many publications reported guidelines for using NMBAs in the elderly, based on studies comparing old people with young people. : No one screened frailty before, and thus, no studies compared frail elderly and non-frail elderly undergoing cancer surgery. Conclusion: Despite many studies about curarisation in the specific populations, and many arguments for a potential interest for investigation, no studies investigated specifically the response to NMBAs in regard of the frailty-induced and age-related sarcopenia.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Nao Yamaoka ◽  
Yu Imaizumi ◽  
Takunori Nagashima ◽  
Taiki Furutani ◽  
...  

A three-dimensional human neuromuscular tissue model that mimics the physically separated structures of motor neurons and skeletal muscle fibers is presented.


Sign in / Sign up

Export Citation Format

Share Document